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a b s t r a c t

Density estimation is integral to the effective conservation and management of wildlife.
Camera traps in conjunction with spatial capture-recapture (SCR) models have been used
to accurately and precisely estimate densities of “marked” wildlife populations comprising
identifiable individuals. The emergence of spatial count (SC) models holds promise for
cost-effective density estimation of “unmarked” wildlife populations when individuals are
not identifiable. We evaluated model agreement, precision, and survey costs, between i) a
fully marked approach using SCR models fit using non-invasive genetic data, and ii) an
unmarked approach using SC models fit using camera trap data, for a recovering popu-
lation of the mesocarnivore fisher (Pekania pennanti). The SCR density estimates ranged
from 2.95 to 3.42 (2.18e5.19 95% BCI) fishers 100 km�2. The SC density estimates were
influenced by their priors, ranging from 0.95 (0.65e2.95 95% BCI) fishers 100 km�2 for the
uninformative model to 3.60 (2.01e7.55 95% BCI) fishers 100 km�2 for the model informed
by prior knowledge of a 16 km2

fisher home range. We caution against using strongly
informative priors but instead recommend using a range of unweighted prior knowledge.
Thin detection data was problematic for both SCR and SC models, potentially producing
biased low estimates. The total cost of the genetic survey ($47 610) was two-thirds of the
camera trap survey ($77 080), or comparable ($75 746) if genetic sampling effort was
increased to include sex and trap-behaviour covariates in SCR models. Density estimation
of unmarked populations continues to be a series of trade-offs but as methods improve
and integrate, so will our estimates.
© 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Estimating the density of animals is integral to researching, conserving, and managing wildlife populations (Williams
et al., 2002). Population data are imperative for applying appropriate and effective conservation interventions, such as
deciding when and where to focus protection efforts for threatened species (Bradley et al., 2017), delineating sustainable
mbia, Department of Forest Resources Management, 2424 Main Mall, Vancouver, V6T 1Z4, Canada.
r).

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:joburgar@gmail.com
www.sciencedirect.com/science/journal/23519894
http://www.elsevier.com/locate/gecco
https://doi.org/10.1016/j.gecco.2018.e00411
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.gecco.2018.e00411


J.M. Burgar et al. / Global Ecology and Conservation 15 (2018) e004112
harvest levels (Kachel et al., 2016), or mitigating human-wildlife conflict (Mcgregor et al., 2015). Effective conservation
management requires that density estimates are both accurate and precise, and produced with sufficient frequency to ensure
informed decision-making (Jim�enez et al., 2017). This is especially true for species of conservation concern where inaccurate
and imprecise estimates can provide a false signal of stability (Tobler and Powell, 2013) and result in a lack of needed con-
servation effort (Bauer et al., 2015).

The past decade has seen parallel and complementary developments in field and statistical density estimation methods.
There has been a move away from labour-intensive and invasive field surveys to the use of non-invasive remote sensing
devices, such as camera traps (e.g., Burton et al., 2015). At the same time, analyses are shifting from traditional (e.g., capture-
recapture models) to more complex statistical techniques, such as spatial capture-recapture (SCR) models (Borchers and
Efford, 2008; Efford, 2004; Royle and Young, 2008). SCR models are an extension of traditional capture-recapture models
that explicitly account for trap location and animal movement. They have beenwidely applied to field data, predominantly to
estimate mammalian (carnivore) density (e.g., Royle et al., 2011) but also for birds (Mollet et al., 2015), sharks (Bradley et al.,
2017), amphibians (Mu~noz et al., 2016), and insects (Torres-Vila et al., 2012). Themajority of SCRmodels are applied to camera
trap survey data of naturally marked individuals (e.g., Avgan et al., 2014), secondly to data generated from genetic sampling
methods (e.g., Gardner et al., 2010), and less frequently to other data types, such as acoustic recordings (Dawson and Efford,
2009). With the advancement of both field and analytical methods, density estimates are now being produced for previously
unstudied populations (e.g., Sollmann et al., 2014). While SCR models are proving extremely useful for estimating the density
of uniquely identifiable individuals d e.g., unique pelage markings or genetic analysis of hair and scat samples d many
species are not uniquely identifiable from camera trap images, and other means of individual identification may be pro-
hibitively costly or invasive.

The global increase in camera trap surveys has generated large volumes of data on a broad range of species (Steenweg
et al., 2017), raising the possibility of simultaneously monitoring multiple species, including those that were not the orig-
inal focus of the study (Rayan et al., 2012; Scotson et al., 2017). Indeed, 60% of camera trap studies comprise multiple species
surveys (Burton et al., 2015), potentially representing awealth of data available for species density estimation if models could
reliably estimate densities of unmarked populations. Based on the results of previous simulation studies, spatial mark-resight
(SMR) and spatial count (SC)models showgreat promise for estimating densities of populations where some or all individuals
within the population are unmarked (Chandler and Royle, 2013). However, few published papers apply these models to field
data (Evans et al., 2017; Jim�enez et al., 2017; Kane et al., 2015; Rich et al., 2014; Sollmann et al., 2013), and when applied, SMR
and SC models do not always converge (e.g., Sollmann et al., 2013). As conservation scientists and practitioners begin to use
these more advanced models, there is a need to further assess their potential for producing reliable estimates from empirical
datasets.

In this study, we capitalized on data collected as part of a study on the genetics and landscape connectivity of a recovering
population of the mesocarnivore fisher (Pekania pennanti) (Stewart et al., 2017). Previous research on fishers in other regions
includes estimates of density and home range size (e.g., Fuller et al., 2001; Koen et al., 2007; Linden et al., 2017), making it a
useful species with which to compare SCR and SC models for conservation objectives. Our study goals were threefold: 1)
estimate fisher density from an SCRmodel using non-invasive genetic survey data; 2) evaluate the ability of an SCmodel using
concurrent camera trap survey data to produce comparable estimates; and 3) compare the costs and benefits associated with
both sampling methods.

Our study builds on a recent fisher population study that compared density estimates using individual genetic data in a
SCRmodel to camera detection data in a Royle-Nichols model (Linden et al., 2017). The unmarkedmodelling approach that we
evaluate (SC) explicitly uses the spatial correlation of count data to estimate density (Chandler and Royle, 2013), in contrast to
the Royle-Nichols model, which assumes that individuals are counted only once per sampling occasion (Royle, 2004), a
condition violated in our survey. We include a cost comparison of methods as managers and conservationists must routinely
weigh the benefits of a sampling approach against the feasibility, including costs, of implementation. Thus, our goal was to
evaluate the analytical component while considering field costs, as conservation practitioners rarely consider onewithout the
other when designing a monitoring program. We recognize that the type of survey is dictated by the research question; it is
not our intention to discourage the use of either genetic or camera trap surveys. Rather, our analyses provide guidance on the
advantages and limitations of using these field and statistical methods for estimating population density and informing
conservation decisions.
2. Materials and methods

2.1. Study area and sampling design

Our study took place on the Cooking Lake Moraine (53.381 �N, 113.063 �W), a multi-use landscape of exurban develop-
ment, protected areas, and agriculture covering 1596 km2 in central Alberta, Canada (Fig. 1). The forested sections of this
landscapewere dominated by trembling aspen (Populus tremuloides) and balsam poplar (P. balsamifera), with clusters of white
and black spruce (Picea glauca and P. mariana) interspersed with small water bodies characteristic of a glacial moraine. A
diverse mammal community occupied this heterogeneous landscape, including fisher, a medium sized mustelid (2.2e7.0 kg)
native to North American forests (Powell, 1982; Stewart et al., 2018).



Fig. 1. The study area encompassed 64 fisher sampling sites, each within one 4� 4 km2 grid cell, in the Cooking Lake Moraine (Alberta, Canada). Genetic samples
were collected from 64 site hair traps (January to April 2016) while images were collected from 62 site camera traps (1 January to 4 March 2016). The symbols
refer to fisher detections by sampling type at each site; NA indicates the sites where cameras were inactive.
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Fisher density was surveyed using a multi-method approach (sensu Fisher and Bradbury, 2014) combining non-invasive
genetic tagging via hair sampling and infra-red remote cameras. The study area comprised 64 grid cells deployed in a sys-
tematic sampling design (Fig. 1), each 4� 4 km2 to approximate fisher home range (Linden et al., 2017). Within each cell a
sampling sitewas composed of a hair trap, consisting of a treewrapped in barbed wire and baitedwith ~5 kg of beaver carcass
and a commercial scent lure (O'Gorman's™ Long Distance Call), and a Reconyx PC900 Hyperfire™ infra-red remote digital
camera. To meet the assumption of a closed population we sampled during a period of localized movement, rather than
dispersal, from January to April 2016 (Powell, 1982). Hair traps were checked monthly to maximize detections between site
visits while minimizing DNA degradation due to exposure (Foran et al., 1997): checks involved DNA sample collection and
torching the barb wire to avoid contamination between monthly DNA samples. DNA was extracted from collected hairs and
analyzed to identify species, individual, and sex using 15 microsatellite primers (Appendix A; Stewart et al., 2017).

Cameras were placed ~6e10m away from, and facing, the baited tree, and were ~1.5m above the ground; the camera's
field of view included the hair trap, bait, and surrounding area. Cameras were triggered by heat-in-motion and recorded five
consecutive photographs with 1 s delay between each. There was no set delay between detection events. We subset the
camera data to the period when the maximum number of cameras were continuously operational; the final camera detection
dataset comprised 62 sites operating for 64 days from January 1 to March 4, 2016. For the camera data, fisher detection events
were considered independent when the time between subsequent fisher images was >60min. Therewere only slightly fewer
detection events with a 60-min threshold than if we set a 30-min threshold, and no difference from 120- or 180-min
thresholds. Research was permitted by Alberta Environment and Parks (16-004) and University of Alberta Animal Care
Committee (AUP00000518).

2.2. Model implementation

We compared Bayesian spatial capture-recapture (SCR) models fit using the genetic data (Royle et al., 2014) with Bayesian
spatial count (SC) models fit using the camera data (Chandler and Royle, 2013). SCR models are an extension of traditional
capture-recapture models in that they explicitly incorporate spatial information, rather than ignoring that information or
treating it as a nuisance variable as done in traditional capture-recapturemodels (Efford, 2004; Royle et al., 2014). SCRmodels
consider N individuals to be located within a state-space S during the survey period. S theoretically encompasses all traps as
well as a surrounding area large enough to contain all individuals that may have been exposed to the survey. Each individual
has an activity centre within S, analogous to the individual's home range centre during the study period. The population is
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sampled at J traps over K occasions, with encounters by n individuals. An individual's probability of encounter pij is conditional
on where individual i lives. If we define an individual's activity centre as a two-dimensional spatial coordinate si, then pij can
be expressed as a decreasing function of the Euclidean distance between si, and the location of trap j (Royle et al., 2014). We
defined the baseline encounter probability as l0.

For the SCRmodels, hair samples were collected once amonthwith one genetic sample identified per trap; thus detections
effectively followed a binomial distribution with an individual either being present or absent at each trap on each sampling
occasion. For the SC models individuals were not known, but inferred, and we assumed that these latent encounter histories
for individual i at trap j during sample occasion k, yijk, were mutually independent outcomes of a Poisson random variable,
which expresses the probability of a given number of events occurring in a fixed interval of time and space. Both SCR and SC
models also estimate s, a spatial scale parameter determining the rate at which the encounter probability declines with
distance.

The Bayesian approach to SCR modelling requires data augmentation, i.e., setting the population at some augmented size
M by adding potential unobserved individuals with an all-zero encounter history to create a dataset with a zero-inflated
population (Royle and Dorazio, 2012; Royle and Young, 2008). N is a derived variable, the product of M and j: the propor-
tion of individuals within the augmented population that occur within the sampled population. Density, D, can then be
calculated by dividing N by S. The difference between SC and SCR models is that SC models deal with unidentified individuals
by using spatial correlations in observed counts to infer the locations of individual activity centres (Chandler and Royle, 2013;
Royle et al., 2014). Formulating SCmodels requires combining random effects for individual identity with the random effect of
locations of individual activity centres (Appendix B).

As space use and site fidelity can differ between sexes, and baiting traps has been shown to produce a positive trap-
behaviour response in fishers (Linden et al., 2017) we included a sex effect and a trap-behaviour response in our SCR
model. However, adding covariates can reduce precision, especially for elusive carnivores with low detection rates, thus we
also ran “base” SCRmodels without covariates (all models described in Appendix B). In all models we setM to 300, well above
the expected population size. We ran models using JAGS (Plummer, 2003), interfacing through R using the jagsUI (Kellner,
2016) and the rjags (Plummer, 2016) packages for the SCR and SC models, respectively. We ran one model with uninfor-
mative priors while the remaining three had informative s priors. For the uninformative models we specified the s prior with
a uniform distribution between 0 and 1000. For the informative models we considered fisher home range sizes from the
literature (16 km2; Linden et al., 2017) and a concurrent telemetry study (4e72 km2; Appendix C). For the first informative s

prior we allowed for awide range of home range estimates (4e72 km2), while not addingweight to any particular home range
size. The other two informative s priors were defined by designating cumulative prior distribution weight to home range
estimates of 16 km2 and 40 km2, respectively. We used gamma distributions to specify these priors, following Chandler and
Royle (2013; Table C1). For all models we specified a l0 prior with a uniform distribution between 0 and 10 and a j prior with a
beta distribution having shape and scale set to 1. For the SCRmodels we ran three chains for 12 000 iterations with a burn in of
2000 (after an adaptive phase of 100). For the SC models we ran three chains for 100 000 iterations with a burn in of 50 000
(after an adaptive phase of 1000). We did not thin the posterior distributions. Model output was viewed using the package
coda (Plummer et al., 2006). For all models we added a buffer of 4 km (>3 times our calculated sigma for a home range of
40 km2) to the outermost trap coordinates for a state-space of 1695 km2.

2.3. Survey method cost comparison

We calculated the cost associated with each survey method, including the field equipment and logistics, sample pro-
cessing, and analysis. It took two people one hour to initially set up each site and 10 person-days month�1 to service the 64
sites. The two-month camera trap study required a total of 172.8 person-hours for initial set-up, servicing half way through to
re-bait, and retrieval. The four-month genetic survey required an investment of 262.4 person-hours across five site visits:
initial set up, three visits to sample for hair and re-bait, and a final visit to sample and retrieve equipment. For comparison
purposes we assumed each survey was conducted independently and calculated costs as such, although in reality costs were
shared between surveys for the first three site visits. Genetic samples were sent toWildlife Genetics International (Nelson, BC,
Canada) for DNA microsatellite analysis whereas camera image processing and statistical analyses were conducted by the
authors (FECS and JMB, respectively). Field, image processing, and statistical analysis labour costs were set to $20 hr�1 for
consistency. This study used high-quality remote camera equipment; tomake the comparisonmore generalizable we provide
expected low and medium equipment costs in Appendix D.

3. Results

3.1. Fisher detections

We collected 146 hair samples, of which 103 were identified as fisher but only 43 yielded sufficient genetic data to identify
individuals (42% overall success rate). Five females and five males were detected more than once, up to three times per in-
dividual female and up to seven times per individual male. Microsatellite analyses identified 24 individual fishers (Appendix
A; Stewart et al., 2017): 15 females and nine males, for a total of 21 female and 22 male genetic fisher detections over the four,
month-long sampling occasions. The mean maximum distance between recaptures was 6.0 km. For the camera data, there
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were 169 independent fisher detection events across 62 sites over the 64, day-long sampling occasions. The detection rate [#
detections/(# traps * # sampling occasions)] was higher for the genetic survey (17%) compared to the camera trap survey (4%)
despite fishers being detected at 33 camera traps (53%) versus 19 hair traps (31%; Fig.1). During the period when both types of
traps were operating concurrently, fishers were detected by cameras at 15 sites where they were not detected by hair traps,
whereas all hair trap detections were also detected by cameras.

3.2. Model performance

For all models, the Brooks and Gelman (1998) multivariate potential scale reduction factor was �1.02 and the potential
scale reduction factors for individual parameters were all �1.06. These values, along with visual inspection of the trace plots
for each parameter, indicated convergence of the MCMC chains on each run. The 95% Bayesian credible intervals (BCI) of the
full SCR model density estimates were 4e5 times wider than the BCI of the base SCR model; as such, estimates of the full SCR
model are only reported in the Appendix (Table E1). We focus our results on the comparison of the base SCR model (without
covariates) to the SC model. The estimated population was well below the data augmented population, with J� 0.31 and
0.43 for the SCR and SC models, respectively (Table 1).

3.3. Density estimation

Density estimates varied among methods and model structures (Table 1, Fig. 2). The SCR density estimates were similar
regardless of the prior on s, estimating between 2.95 and 3.42 fishers 100 km�2 with 95% BCI ranging from 2.18 to 5.19 fishers
100 km�2. In contrast, density estimates from the SC models were influenced by their s priors. They ranged from 0.95
(0.65e2.95 95% BCI) fishers 100 km�2 for the uninformativemodel to 3.60 (2.01e7.55 95% BCI) fishers 100 km�2 for the s prior
equating to a home range size of 16 km2, the only SC estimate that did not underestimate density compared to the SCR es-
timates. The SC model with the unweighted informative s prior, representing the range of home range sizes calculated from
the concurrent telemetry study, estimated 1.5 (0.73e3.91 95% BCI) fishers 100 km�2.

Unsurprisingly, the prior on s influenced the s estimates, particularly for the SC models (Table 1, Fig. 3). The uninformative
models produced the largest s estimates, which were 2.48 km for the SCR model: (1.98e3.45 95% BCI); and 1.80 km for the SC
model (1.40e2.67 95% BCI). The models with the s prior equating to a home range size of 16 km2 produced the smallest s
estimates [SCR: 1.62 (1.45e1.87 95% BCI) km; SC: 1.07 (0.84e1.44 95% BCI) km]. The s estimates from the unweighted
informative s prior model were 96 km2 and 55 km2 for the SCR and SCmodels, respectively. SC l0 estimates were consistently
low (0.13e0.14) while the SCR l0 estimates doubled for models with weighted s priors (up to 0.35; Table 1). Coefficient of
variation (CV; standard deviation divided by the mean) values for density, s and l0 were between 6-35% and 9e52% for the
SCR and SC models, respectively (Table 1).

3.4. Surveys costs

The total cost of our genetic survey ($47 610) was two-thirds that of the camera trap survey ($77 080), despite the genetic
survey requiring two additional visits per site (Table D1). The additional expense for the camera trap survey was due to initial
capital costs in purchasing the camera equipment. Using less expensive camera traps would drastically reduce survey costs
(Appendix D), although this may reduce data quality, particularly when less expensive equipment is used for multiple years
(Newey et al., 2015). Assuming equipment would be reused, subsequent surveys would cost moderately less for genetic
Table 1
Spatial capture-recapture (SCR) and spatial count (SC) posterior summaries for fishers sampled in the Cooking Lake Moraine from January to April, 2016.
Parameter values are presented as the mode with 95% Bayesian credible intervals and coefficient of variation (CV; standard deviation divided by the mean *
100).

Uninformative s Informative s (4e72 km2) Informative s (16 km2) Informative s (40 km2)

SCR SC SCR SC SCR SC SCR SC

Da 2.95 (2.18, 4.72) 0.95 (0.65, 2.95) 3.25 (2.18, 4.84) 1.51 (0.73, 3.91) 3.42 (2.36, 5.19) 3.60 (2.01, 7.55) 3.42 (2.30, 5.02) 1.56 (1.03, 3.37)
D CV 22% 43% 21% 52% 20% 34% 21% 31%
l0

b 0.15 (0.07, 0.28) 0.13 (0.08, 0.21) 0.17 (0.09, 0.34) 0.13 (0.08, 0.21) 0.35 (0.19, 0.75) 0.14 (0.09, 0.22) 0.25 (0.14, 0.49) 0.14 (0.09, 0.22)
l0 CV 19% 23% 20% 23% 35% 23% 24% 25%
sc 2.48 (1.98, 3.45) 1.80 (1.40, 2.67) 2.26 (1.85, 2.90) 1.71 (1.19, 2.35) 1.62 (1.45, 1.87) 1.07 (0.84, 1.44) 1.91 (1.66, 2.18) 1.63 (1.34, 1.92)
s CV 15% 17% 12% 16% 6% 14% 7% 9%
Jd 0.18 (0.11, 0.28) 0.06 (0.03, 0.18) 0.18 (0.11, 0.29) 0.09 (0.05, 0.27) 0.19 (0.12, 0.31) 0.20 (0.11, 0.43) 0.18 (0.12, 0.29) 0.12 (0.06, 0.24)
J CV 24% 45% 24% 53% 24% 35% 23% 34%
MRTe 0.8 35.0 0.8 35.9 0.8 36.0 0.8 29.3

a Density (fishers 100 km�2).
b Baseline detectability for an individual whose activity centre is located precisely at the trap.
c Spatial scale parameter.
d Proportion of individuals from the data augmented population.
e Model run time (hours).



Fig. 2. Spatial capture-recapture (SCR; genetic survey) and spatial count (SC; camera survey) model fisher density estimates (mode± 95% Bayesian credible
interval). Models varied by their s prior, which was either uninformative or based on home range estimates varying between 4 and 72 km2, or weighted at 16 km2

and 40 km2.

Fig. 3. Spatial capture-recapture (SCR; genetic survey) and spatial count (SC; camera survey) model fisher s estimates (mode± 95% Bayesian credible interval).
Models varied by their s prior, which was either uninformative or based on home range estimates varying between 4 and 72 km2, or weighted at 16 km2 and
40 km2. The horizontal lines depict the median (dark gray) and 2.5 and 97.5 quartiles (light gray) for the s prior gamma distributions.
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surveys and substantially less for camera trap surveys (Fig. D1). By the third survey, the cumulative cost of the camera trap
survey was less than the genetic survey (Fig D1).

Because the 95% BCI were too large to be informative for the full SCR models, we ran simulations to determine the number
of sampling occasions necessary to produce density estimates while including sex and trap-behaviour covariates. We based
simulated parameters on output from the full SCR model and set K to 4, 8 and 12 (Appendix E). Simulation results indicated
that tripling the number of sampling occasions (K¼ 12) produced 1.08 95% BCI widths on average, assuming a population
density of 4.42 fishers 100 km�2 (Fig E1). Assuming that tripling the number of occasions would also triple the number of
samples dand considering only cost increases to field labour and DNA processingd a genetic survey with 12 sampling oc-
casions would cost $75 746, which is comparable to the cost of our camera trap survey.

4. Discussion

This examination of SCR and SC density estimates of a recovering mesocarnivore illustrates that camera trap data from
unmarked individuals have the potential to inform species conservation research and management, with careful interpre-
tation. The SC model, fit using camera trap data, slightly underestimated density relative to the SCR model [1.51 (0.73e3.91
95% BCI) fishers 100 km�2] compared to the base SCR model, fit using genetic data [3.25 (2.18e4.84 95% BCI) fishers
100 km�2]. The SCR and SC model BCIs overlapped and were of similar widths, indicating that the SC model estimates were
plausible, albeit less precise �21% CV for the SCR model compared to 52% CV for the SC modeld and must be interpreted
cautiously. Despite the relative imprecision, the SC density estimate precisionwas comparable to or better than the precision
from SC density estimates of other carnivores (Jim�enez et al., 2017; Kane et al., 2015). Genetic surveys were only more cost-
effective than camera trap surveys if genetic sampling occasions were kept to a minimum and cameras were used only once.
Density estimates from complex SCR models, those that include sex and trap-behaviour covariates, would require increased
genetic sampling and associated costs. In our study, modelling the density of unmarked fishers detected from camera trap
surveys produced density estimates that could be cautiously used as a population estimate, potentially augmented with other
sampling methods in a long-term conservation monitoring program.

Fisher densities estimated from the SC models were dependent on the choice of s priors, which generally approximated
the range of reported fisher home range estimates (Arthur et al., 1989; Powell and Zielinski, 1994). In contrast, the s prior
influenced l0 for the SCRmodels, understandable given that in SCRmodels density is influenced both by s and an individual's
use of specific traps; thus constraining s will cause l0 to fluctuate. There was a closer mirroring of posterior and prior s

distributions for the SC models, revealing the influence of prior knowledge when modelling with relatively sparse detection
data. Indeed, previous simulation studies on SC models found that posterior distributions were highly skewed and posterior
precision was low when sample sizes were small to moderate (Chandler and Royle, 2013). Thus, we advise against using
strongly informative priors and instead recommend using a range of unweighted prior knowledge, such as in our case where
we used an informative prior for home range estimates between 4 and 72 km2. If reasonable prior knowledge is not available,
we recommend only using SCmodels if simulations suggest that sample sizes of detections are high enough towarrant use of
uninformative priors.

Fisher density in the Cooking LakeMorainewas relatively low. Density estimates were similar to estimates for a population
in the sub-boreal spruce region of British Columbia, derived from minimum count alive and telemetry data (Weir and
Corbould, 2006) and lower than estimates for populations in eastern North America (Furnas et al., 2017; Koen et al., 2007;
Linden et al., 2017). In our study, average trap spacing was 2.8 km for the 64 sites, less than the recommendedmaximum of 2s
average trap spacing (Efford and Fewster, 2013; Sollmann et al., 2012; Sun et al., 2014), suggesting trap spacing was appro-
priate in our study for either samplingmethod. Back-transforming s estimates yielded larger than expected home range sizes,
particularly for the SCR model. This is likely due to the fact that camera traps detected fishers more readily than the genetic
sampling; similar to multi-method studies elsewhere (Clare et al., 2017; Fisher et al., 2016; Fisher and Bradbury, 2014), nearly
half the sites with camera detections did not produce genetic detections, either because there was no genetic sample or
individual identity of the genetic sample was not successful. While useful for assessing the adequacy of the sampling design
we caution against using s estimates to infer fisher home range size, particularly when sample sizes are low and spatial
recaptures are limited.

In contrast, we consider l0 estimates as appropriate, due to the relatively narrow BCIs and comparability between
methods. We used baited traps, as fishers in our study system occurred at low densities, and baiting is likely necessary to
ensure adequate numbers of detections for modelling (du Preez et al., 2014; Gerber et al., 2012).When carnivores occur in low
densities and traps are not baited, SCR densities estimates can be very imprecise (e.g., Sunarto et al., 2013). Given that
mustelids are more likely to visit a trap if they have visited it previously (Linden et al., 2017; e.g., Royle et al., 2011; Sir�en et al.,
2016), we had hoped to include a trap-behaviour covariate in the SCR model. Unfortunately, despite using a Bayesian
approach, the low sample size inhibited inclusion of covariates. Therefore we recommend future genetic surveys increase the
sampling occasions from 1 to 3 per month, for a total of 12 over the study period. For other studies we highly recommend
simulating data, using parameters derived either from a pilot study or local knowledge, to ensure sufficient genetic sampling
occasions.

While the SC models show promise in our study, there may be conditions under which they are not appropriate, such as
estimating density of rarer and more elusive species with very low detection rates. In addition, when sampling units are not
set up in a grid array, SC models are unlikely to converge (Sollmann et al., 2013), or they might produce estimates too
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imprecise to be useful (Kane et al., 2015). We therefore suggest that future simulation and empirical studies test the sensi-
tivity of SC models to trap configuration (e.g., Sun et al., 2014). Improvement in model convergence and precision may be
gained through emerging approaches that incorporate additional information about the population, such as partially marked
individuals and/or space usage from telemetry data (Augustine et al., 2016; Gopalaswamy et al., 2012; Sollmann et al., 2013).

Similar to other studies, we found that camera trap surveys can be as cost-effective as other sampling methods (Cheng
et al., 2017; Sir�en et al., 2016), or relatively inexpensive when re-using cameras over multiple surveys. As camera traps
sample multiple species, estimating density for multiple species would only incur additional costs of statistical analysis, as
opposed to genetic surveys, which would incur costs of analysing genetic markers for each species. If physiological, genetic,
individual, or population dynamics are driving a species-specific monitoring program, information gleaned from genetic
surveys are invaluable (Diefenbach et al., 2015; Murphy et al., 2016). If community dynamics or multi-species density esti-
mates are the priority, the initial start-up costs of a camera trap survey are greatly outweighed by the ability to survey
multiple species concurrently (although we note that trade-offs likely exist in sampling design across species with different
densities and movement behaviours, cf. Neilson et al., 2018). SCR studies of species of conservation concern predominantly
use camera trap data to estimate densitydthese data could conceivably be mined to estimate densities of non-target species
(e.g., Rayan et al., 2012; Sollmann et al., 2014). The use of genetic surveys, camera trap surveys, or integrating both (e.g.,
Chandler and Clark, 2014) comes down to the research questions of interest and funding constraints.

The nature of remotely operating camerasdwhere researchers can post hoc discretize continuous data into desired survey
durationsd compared to hair traps dwhere frequency of sampling occasion is limited by field costs, logistics, and DNA
degradation in the field (Kendall and Mckelvey, 2008)dmeans that camera trap surveys can require fewer field visits, but
produce richer detection datasets, than genetic surveys. Thus, camera trap surveys for density estimation are more likely to be
cost-effective in terms of human resources over the short-term and actual dollars over the long-term, particularly when
genetic sampling is sufficiently high-frequency to generate data for sex and trap-behaviour SCR models and for successful
DNA identification. Most camera trap studies of unmarked populations have relied on proxies of density, such as relative
abundance indices (detection rates) or occupancy (Burton et al., 2015). Such indices can be problematic as they confound
density and movement (Neilson and Boutin, 2017; Parsons et al., 2017) and direct estimates of density are preferable. Where
multi-species density estimation is not the primary goal, we concur with other studies that suggest a meld of methods is the
optimal approach for long-termmonitoring (e.g., Chandler and Clark, 2014): for example, by integrating infrequent extensive
genetic sampling surveys with unmarked camera trap survey density estimation. The multi-species capacity and finer
temporal resolution of camera trap data can aid ecological inquiry by yielding information about community processes that
can affect species density, such as the timing and duration of interactions with predators and competitors (Frey et al., 2017),
and behavioural patterns (Caravaggi et al., 2017).With thewealth of camera trap data now available to researchers, SCmodels
may provide baseline density estimates for populations otherwise not monitored, which can be used as a core component in
monitoring programs augmented with other methods.
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