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Abstract

Spatial capture–recapture (SCR) models are powerful analytical tools that have

become the standard for estimating abundance and density of wild animal

populations. When sampling populations to implement SCR, the number of

unique individuals detected, total recaptures, and unique spatial relocations

can be highly variable. These sample sizes influence the precision and accu-

racy of model parameter estimates. Testing the performance of SCR models

with sparse empirical data sets typical of low-density, wide-ranging species can

inform the threshold at which a more integrated modeling approach with

additional data sources or additional years of monitoring may be required to

achieve reliable, precise parameter estimates. Using a multi-site, multi-year

Utah black bear (Ursus americanus) capture–recapture data set, we evaluated

factors influencing the uncertainty of SCR structural parameter estimates, spe-

cifically density, detection, and the spatial scale parameter, sigma. We also

provided some of the first SCR density estimates for Utah black bear

populations, which ranged from 3.85 to 74.33 bears/100 km2. Increasing total

detections decreased the uncertainty of density estimates, whereas an increas-

ing number of total recaptures and individuals with recaptures decreased the

uncertainty of detection and sigma estimates, respectively. In most cases, mul-

tiple years of data were required for precise density estimates (<0.2 coefficient

of variation [CV]). Across study areas there was an average decline in CV of

0.07 with the addition of another year of data. One sampled population with

very high estimated bear density had an atypically low number of spatial

recaptures relative to total recaptures, apparently inflating density estimates. A

complementary simulation study used to assess estimate bias suggested that

when <30% of recaptured individuals were spatially recaptured, density esti-

mates were unreliable and ranged widely, in some cases to >3 times the simu-

lated density. Additional research could evaluate these requirements for other

density scenarios. Large numbers of individuals detected, numbers of spatial
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recaptures, and precision alone may not be sufficient indicators of parameter

estimate reliability. We provide an evaluation of simple summary statistics of

capture–recapture data sets that can provide an early signal of the need to alter

sampling design or collect auxiliary data before model implementation to

improve estimate precision and accuracy.
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INTRODUCTION

Estimating abundance and density of wildlife populations
with accuracy and precision is fundamental to ecological
research and has critical implications for effective wildlife
conservation and management efforts. Over the past
15 years, spatial capture–recapture (SCR) models have
emerged, advanced, and become the standard for robust
population abundance and density estimation, particu-
larly for wide-ranging species that violate the assump-
tions of geographic closure (Borchers & Efford, 2008;
Royle & Young, 2008). SCR models update strictly tempo-
ral capture–recapture frameworks by using spatiotempo-
ral encounter histories of unique individuals to account
for spatial variation in detection probability across the
landscape. They model detection as a function of trap
locations relative to the estimated center point of an indi-
vidual’s space use, known as its activity center (Royle,
Chandler, Sollmann, et al., 2013). The highest probability
of detecting an animal is at its activity center, with
declining detection probability as distance from the activ-
ity center increases. The area in which density is esti-
mated is a discretized plane referred to as the state space,
which encompasses the trap array and extends outward
to the surrounding area to include all activity centers
available for detection. This allows for an explicit estima-
tion of density and, thus, population size (Gardner
et al., 2010). Covariates can be attributed to the state space,
and density can be modeled as a function of these spatial
attributes (Sutherland et al., 2019). Ultimately, SCR
models have proven to be a rich and flexible model frame-
work with which to derive precise population estimates
and to understand more fully the drivers of spatial varia-
tion in abundance and density (Fuller et al., 2016; Kendall
et al., 2019; Murphy et al., 2019; Royle, Chandler, Gazenksi,
et al., 2013; Royle, Chandler, Sun, et al., 2013).

Parameter estimation using SCR requires obtaining ade-
quate sample sizes of unique individuals, recaptures, and
spatial recaptures (Royle, Chandler, Sollmann, et al., 2013).
The number of individuals detected, coupled with the esti-
mated detection probability within the state space, informs
the density estimates (Efford & Boulanger, 2019). The most

commonly used detection function, the half-normal model,
comprises two parameters that are informed by recaptures
and spatial recaptures. First, detections and recaptures of
unique individuals across sampling occasions inform the
baseline detection probability estimates at the activity cen-
ter. Second, spatial recaptures supply distance measure-
ments between traps and latent animal activity centers that
allow for estimation of the spatial parameter that defines
individuals’ space use and controls the rate of decline of the
detection function as the distance from the activity center
increases (Efford, 2004; Royle & Young, 2008).

To effectively inform wildlife conservation and man-
agement decision-making, SCR parameter estimates must
be reliable, meeting the criteria of both precision and
accuracy (Paterson et al., 2019). Given that sufficient data
are required for parameter estimation, precision and
accuracy of estimates are expected to be influenced by
sample sizes. For SCR, sample size has multiple mea-
sures. The number of individuals, recaptures, and spatial
recaptures are each relevant for the hierarchical model.
For example, we expect precision and accuracy to
increase for density estimates as the number of individ-
uals detected increases (Morin et al., 2018), for baseline
detection probability estimates as the number of total
detections and recaptures increases (Wilton et al., 2014),
and for sigma estimates as the number of spatial recap-
tures increases (Morin et al., 2018).

Elusive, wide-ranging, or depleted carnivore populations
are characterized by low densities and low detection rates
(Linden et al., 2017; Wilton et al., 2014). Even given an ideal
study design, sampling these populations often results in
sparse data sets with few unique detections and limited
spatial recaptures (Howe et al., 2013). This is especially rele-
vant to genetic capture–recapture sampling in remote areas.
This technique is commonly used to sample carnivore
populations but, given the logistic challenges and common
budget constraints, it often results in a limited number of
sampling sites or revisits and correspondingly sparse data
sets. Whereas simulation-focused studies have provided
a baseline for understanding the performance of SCR
models given a range of sampling scenarios (Clark, 2019;
Paterson et al., 2019; Sollmann et al., 2012; Sun et al., 2014),
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assessment of the consequences of low sample sizes on SCR
parameter estimate uncertainty in empirical data sets has
been limited. Implementation of SCR modeling across real-
world capture–recapture data sets with a range of sample
sizes can serve to evaluate when SCR is an effective tool for
deriving precise parameter estimates versus when detection
rates and population densities are too low for the model
framework to perform well. In these cases, a more inte-
grated modeling approach with additional data sources or
additional years of monitoring may be required to improve
parameter estimator precision and coverage (Morin
et al., 2018; Paterson et al., 2019; Royle, Chandler, Sun,
et al., 2013; Sollmann et al., 2013).

From 2004 to 2011, the Utah Division of Wildlife
Resources (UDWR) sampled five black bear (Ursus
americanus) populations distributed across mountainous
regions in the State using the same hair snare design
(Pederson et al., 2012). Each study area represented a pop-
ulation of management interest, encompassing a spectrum
of population characteristics. The data sets covered a range
of sample sizes varying by the number of individuals
detected, recaptures, and spatial recaptures. The data sets
also varied across study areas in properties derived from
sample sizes, including the ratio of individuals with spatial
recaptures to all recaptured individuals and average recap-
tures per detected individual. Additionally, although a few
studies (Morehouse & Boyce, 2016; Morin et al., 2018)
have used multiple sampling years to bolster sample sizes
by sharing parameters across years, assessment of the
effectiveness of this practice as a strategy to increase esti-
mate precision has been limited. These long-term empiri-
cal data sets provide a valuable opportunity to test the
performance of SCR when estimating population parame-
ters of a wide-ranging, low-density carnivore species.

Therefore, to evaluate how capture–recapture data set
characteristics influence structural parameter estimate
uncertainty, we applied the SCR model framework to this
archived multi-site, multi-year black bear genetic
capture–recapture data set. To address both the precision
and accuracy of SCR estimates and explore the mecha-
nisms driving underlying patterns in our empirical data,
we also conducted a complementary simulation study,
creating data sets with similar characteristics to our black
bear capture–recapture data. Finally, we evaluated the
differences among study areas in best-supported models,
describing variation in density, detection, and the spatial
scale parameter sigma, providing insight about variation
among populations of Utah black bears. A better under-
standing of how SCR models perform with limited, but
realistic, sample sizes will allow researchers to more
effectively employ SCR techniques to derive informative
estimates of the population parameters crucial to ecologi-
cal research and management.

METHODS

Study area and archived data

Our analysis incorporated five distinct study areas (Kamas,
Boulder, Strawberry, East Uinta, La Sal) located in moun-
tainous regions across the eastern portion of Utah, each
sampled for 3–6 years within 2004–2011 (Figure 1 and
Table 1). At each site, researchers established a 256 km2

sampling grid separated into 4 km � 4 km cells, totaling
16 cells per site. The only exception to this sampling
design occurred at the Kamas study area in 2004, where
the 256 km2 grid was sampled more intensively with
3.2 � 3.2 km cells, resulting in 25 sampling cells. Each cell
had a hair collection corral constructed with barbed wire
and baited with a scent lure as described in Pederson
et al. (2012). Beginning in June each year, researchers visited
each cell every 14 days over four sampling occasions.
On each sampling occasion, all potential black bear hair
samples were collected, labeled, and dried. To assign an
individual identity and sex to each hair sample, Wildlife
Genetics International (Nelson, British Columbia, Canada)
or Dr. Karen Mock with Utah State University (Logan, Utah,
USA) used six microsatellite markers and an additional
amelogenin marker as detailed in Pederson et al. (2012).

SCR model

To fit SCR models, we used the package oSCR
(Sutherland et al., 2019), which uses maximum likeli-
hood estimation, in R version 3.6.3 (R Core Team, 2020).
We formatted the individually identified black bear
capture–recapture data from each study area into multi-
session (3–6 years) capture histories that retained spatial
information on individual ið Þ detections at hair collection
corrals j¼ 16,25ð Þ across sampling occasions k¼ 4ð Þ,
such that yijk � Bernoulli(pij). The detection model compo-
nent defines probability of detection of an individual at a par-
ticular trap (pij) as a function of distance from the
individual’s activity center si to that trap having location
xj. We used the half-normal model:

pij ¼ p0�exp �dist xj,sið Þ2=2σ2
h i

,

where p0 is the baseline encounter probability, and σ is
the spatial scale parameter determining the rate of
decrease in detection probability in regard to the distance
between xj and si.

To ensure that density estimates were insensitive to
the designation of the state space size, we fitted null
models for all study areas, testing a range of buffer sizes
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around the hair collection locations (5–20 km). For each
study area, we buffered the sampling array by the dis-
tance at which density estimates stabilized and removed
non-habitat (e.g., reservoirs) from the state spaces if nec-
essary. We set a conservatively fine state space resolution
of 0.25 km2 pixel size based on the recommendation that
resolution should be less than half the expected estimate
of sigma (Sutherland et al., 2019).

Ecological model selection

To estimate density for each study area and assess factors
influencing density and detection, we used an Akaike
information criterion (AIC)-based model selection pro-
cess for each study area (Burnham & Anderson, 2004).
We considered individual and trap-level variation in
detection and sigma, landscape-level variation in density,

F I GURE 1 Locations of the five Utah study areas selected to sample black bear populations. Inset shows the Kamas sampling array,

which is representative of the 16 km � 16 km grid sampling scheme used at each of the study areas, where a hair snare collection corral

(black dot) was established in each grid cell
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 19395582, 2022, 5, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2618, W

iley O
nline L

ibrary on [15/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and year-specific variation in all parameters. We used all
years of data available for each study area in a multi-
session model and applied a sequential model selection
approach, first identifying the most parsimonious detec-
tion model, then using that detection model to evaluate
year-specific and landscape-level variation in density for
each study area (Kendall et al., 2009, 2019; Sutherland
et al., 2018). At each model selection step, we used AIC
to select best-supported models within 2 ΔAIC of the
top model that included only informative parameters
(i.e., 85% confidence interval did not cover 0; Arnold,
2010; Sutherland et al., 2018; Wisdom et al., 2020).

For the detection model, we first tested for effects of
sex, year, and a sex–year interaction on the sigma param-
eter. We then used the best-supported covariates for
sigma to build a full detection model. We assessed four
potential influences on baseline detection probability. We
considered a trap covariate quantifying average percent-
age canopy cover within a 270 m2 area around each trap
using the 2011 United States Forest Service Tree Canopy
Analytical Percent Cover layer (Coulston et al., 2012). We
evaluated a scent covariate indexing the rank effect of
scent lure applied at a hair snare corral that we binned
into four categories representing increasing attraction, as
in Pederson et al. (2012). We assessed a trap-specific
behavioral covariate to model trap-happy or trap-shy

behavioral response after first detection. Finally, we
tested for year-specific variation in detection.

Using the best-supported detection model, we fitted
models evaluating percentage canopy cover (Coulston
et al., 2012), elevation (USGS, 2019), and year-specific
density as three candidate covariates on the density
parameter. We aggregated percentage cover and elevation
layers to a 500 m � 500 m cell size to match the resolu-
tion of the state space. Covariates were centered by sub-
tracting each covariate layer by its mean and then scaled
by dividing centered layers by their standard deviations
using the scale() function in R before model implementa-
tion. In addition to reporting the best-supported model
for each study area (Table 2), a full list of models were
evaluated, see Appendix S1: Tables S1–S3.

Evaluating precision with empirical
data sets

To evaluate factors related to SCR estimate precision, we
fitted SCR models to estimate density, detection, and the
spatial scale parameter sigma for a single year, partial
combinations of years, and the full number of years avail-
able for each of the five black bear population study
areas. For example, for a study area sampled from 2009

TAB L E 1 Available years of sampling data for each study area, with individuals detected, estimated density, estimated baseline

detection, estimated sigma, total detections, total recaptures, and total spatial recaptures for single-year models

Site Year n D (bears/100 km2) p0 σ (km) Detections Recaptures Spatial recaptures

Kamas 2004 13 2.32 (0.36) 0.12 (0.28) 4.19 (0.19) 35 22 17

2005 15 4.54 (0.31) 0.23 (0.35) 2.59 (0.18) 28 13 7

2006 14 4.71 (0.34) 0.15 (0.51) 2.76 (0.2) 24 10 6

2007 17 5 (0.28) 0.24 (0.33) 2.65 (0.14) 34 17 8

2008 20 4.66 (0.34) 0.11 (0.34) 3.95 (0.21) 37 17 10

2011 20 3.19 (0.32) 0.16 (0.31) 4.68 (0.18) 40 20 11

Boulder 2008 13 5.32 (0.38) 0.12 (0.51) 2.59 (0.26) 21 8 5

2009 19 8.96 (0.36) 0.13 (0.52) 2.43 (0.22) 26 7 5

2011 17 5.82 (0.31) 0.26 (0.34) 2.88 (0.17) 32 15 10

East Uinta 2010 17 10.44 (0.42) 0.18 (0.51) 1.66 (0.22) 23 6 1

2011 16 8.73 (0.44) 0.1 (0.57) 2.23 (0.24) 21 5 3

Strawberry 2009 14 5.58 (0.36) 0.1 (0.43) 3.01 (0.23) 24 10 7

2010 18 4.68 (0.44) 0.07 (0.37) 4.48 (0.29) 33 15 9

2011 7 3.03 (0.5) 0.01 (1.58) 2.79 (0.24) 13 6 3

La Sal 2009 62 58.05 (0.25) 0.15 (0.31) 1.5 (0.14) 77 15 5

2010 58 44.33 (0.24) 0.11 (0.32) 1.97 (0.14) 74 16 7

2011 74 36.94 (0.17) 0.14 (0.22) 2.38 (0.11) 110 36 17

Note: Parameter estimates are from precision comparison models. Coefficient of variation (standard error of estimate/estimate, coefficient of variation [CV]) for
parameter estimates are shown in parentheses, 0.20 CV is generally indicative of a reasonably precise estimate (Pollock et al., 1990).
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to 2011, in addition to fitting models using only data from
each year (2009, 2010, and 2011) we also ran models that
used 2 and 3 years of data (2009 + 2010, 2009 + 2011,
2010 + 2011, and 2009 + 2010 + 2011). We used a sim-
ple detection model using covariates that shared support
across study areas in the study area-specific best-
supported detection models from the ecological model
selection process detailed above and in Appendix S1:
Tables S1–S3. In multi-year models, we specified density,
detection, and the scale parameter sigma to be shared
across all years, which increased the sample size for

estimation of the shared parameters and provided a sin-
gle standard error estimate for each model parameter
that we could relate to data set sample sizes.

We considered two metrics describing maximum like-
lihood estimate precision: standard error (SE) and the
coefficient of variation (CV; SEEstimate/Estimate). When
back-transforming model parameters from the link scale
to the original scale, the oSCR package calculates SE
using the delta method by taking the square root of the
Hessian of the likelihood function evaluated at the maxi-
mum likelihood estimates (Sutherland et al., 2019). In

TAB L E 2 Ecological model selection results of best-supported models for each study area with coefficients and associated standard

errors for density, baseline detection probability, and sigma

Study area Model Covariate Coefficient Estimate SE

Kamas Density Intercept Dintercept �4.64 0.15

Detection Intercept p0 �2.22 0.20

Behavior pbehavior 1.10 0.28

Trap canopy cover ptrap canopy cover 0.51 0.10

Sigma Intercept sigintercept 8.34 0.10

Boulder Density Intercept Dintercept �3.82 0.25

Elevation Delevation �0.70 0.27

Detection Intercept p0 �1.59 0.28

Sigma Intercept sigintercept 7.97 0.14

East Uinta Density Intercept Dintercept �3.24 0.39

Canopy cover Dcanopy cover �1.79 0.43

Detection Intercept p0 �1.96 0.42

Trap canopy cover ptrap canopy cover 0.97 0.29

Sigma Intercept sigintercept 7.19 0.24

Year sigyear2 0.44 0.20

sigyear3 0.47 0.20

Strawberry Density Intercept Dintercept �4.50 0.24

Detection Intercept p0 �2.48 0.28

Trap canopy cover ntrap canopy cover 0.84 0.17

Sigma Intercept sigintercept 8.18 0.16

La Sal Density Intercept Dintercept �1.60 0.24

Elevation Delevation �0.33 0.15

Detection Intercept p0 �2.18 0.39

Behavior pbehavior 1.32 0.35

Trap canopy cover ptrap canopy cover 0.20 0.08

Scent pscent �0.17 0.08

Sigma Intercept sigintercept 7.73 0.13

Year sigyear2 0.00 0.09

sigyear3 0.20 0.09

Note: Covariates include percentage canopy cover (canopy cover), elevation, trap-specific behavioral covariate (behavior), canopy cover around the hair
collection site (trap canopy cover) ranked scent category used at a trap (scent), and year-specific variation (year). Tables containing all models considered in
our sequential model selection approach with ΔAIC and model weights can be found in Appendix S1: Tables S1–S3. SE, standard error.
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addition to SE, we quantified precision as the CV of the
structural parameter estimates for density, detection, and
sigma (Efford & Boulanger, 2019). We focused primarily
on the CV, as it is a standardized measure of dispersion
around the estimate and therefore more suitable for
cross-population comparisons when there are large dif-
ferences in estimated population densities (Walther &
Moore, 2005). Lower CV values indicate greater preci-
sion, and we considered precise estimates to be those
with a CV < 0.2 (Efford & Boulanger, 2019; Pollock
et al., 1990). However, Efford and Boulanger (2019) noted
that this threshold is only sufficient if managers are inter-
ested in detecting large changes in population size (>64%
decrease, >96% increase). If detecting finer scale changes
in populations is of interest, lower CVs will be needed.
We reported both SE and CV because our aim was to
explore any identifiable patterns related to precision and
uncertainty of parameter estimates.

Relating data set characteristics
to precision metrics

To understand how summarized attributes of the sam-
pling data are related to the uncertainty of SCR structural
parameter estimates, we evaluated a suite of capture–
recapture data set characteristics (Table 3). We assessed
sample sizes that either have been shown or are expected
to influence the uncertainty of parameter estimates includ-
ing the total number of unique individuals, detections,
recaptures, and spatial recaptures (Efford & Boulanger,
2019; Morin et al., 2018). We also included the sample
sizes of unique individuals with recaptures and unique
individuals with spatial recaptures. Additionally, we con-
sidered capture–recapture data set characteristics derived
from sample sizes, such as the ratio of individuals with
spatial recaptures to individuals recaptured only at the
same trap. We also evaluated the average number of detec-
tions, recaptures, and spatial recaptures per individual as
potential variables associated with estimate precision.

The spatial scale parameter sigma is an essential com-
ponent of the detection model that describes the rate of
decay in detection probability from an individual’s activ-
ity center. The distribution of distances between detec-
tions at traps and the estimated activity centers of
recaptured individuals inform the sigma parameter in the
detection component of the model. When individuals are
detected in multiple traps (i.e., spatial recaptures), this
provides information for estimating sigma. Because lon-
ger distance spatial recaptures are inherently rarer than
short-distance spatial recaptures, they have a large influ-
ence on the tail of the distribution (Nathan et al., 2003).
Further, where an individual is not detected also informs

the sigma estimate by decreasing the detection probability
at that trap, at the distance between the estimated activity
center and the trap. When individuals are detected multi-
ple times at the same trap (i.e., simple recaptures) and not
at additional traps, the distance to the activity center is
likely to be small. The ratio of short-distance or same-trap
recaptures to long-distance recaptures might therefore
influence the precision of the resulting sigma estimate.
Thus, to evaluate the influence of the number of spatial
recaptures on estimate uncertainty, we calculated the ratio
of spatial recaptures to total recaptures and the ratio of
individuals with spatial recaptures relative to the total
number of individuals with recaptures, which includes
individuals with spatial recaptures and simple recaptures.

To assess how these capture–recapture data set char-
acteristics covaried with SE and CV associated with the
three SCR structural parameter estimates (density, detec-
tion, and sigma), we used generalized linear models with
a gamma distribution and dispersion set to one to hold
variance constant across the range of the covariates.
Because many sample size characteristics of the capture–
recapture data sets were highly correlated, we only con-
sidered explanatory variables in a univariate context. For
each of the three structural parameter estimates we eval-
uated candidate models based on AICc and considered
top-ranked models to be representative of the sampling
data attributes most associated with the selected metric
(SE, CV) quantifying estimate precision.

To directly evaluate change in the CV of density as a
function of incorporating additional years of sampling data,
we fitted a linear regression with the number of years of
data as a covariate. In the regression we evaluated models
with 1–3 years of data, as Kamas was the only study area
with more than 3 years of available sampling data.

Assessing bias through simulations

We examined density estimates for signals of inaccuracy
(i.e., appreciably lower or higher than expected) by com-
paring SCR density estimates with previous records of
black bear density in the sampling regions specifically
(Frost, 1990) and the arid mountains of the Southwest
generally (Gould et al., 2018). We conducted exploratory
simulations to further assess the driving factors and con-
sequences of identified concerns with sampling data
attributes (Appendix S2: Section S1). We simulated
capture–recapture data on a 16 km � 16 km state space
that matched the 16-trap array used in each black bear
study area. Adapting code from Sutherland et al. (2019),
we simulated capture histories at three densities (2, 20,
and 60 bears/100 km2), encompassing the range of density
estimates from the five sampled populations (Schmidt,
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2021: R code to run SCR simulations.R). We fixed sigma at
2 km, which is on the lower range of sigma estimates from
the empirical data sets and is within the range of acceptable
sigma values given trap spacing (Sollmann et al., 2012; Sun
et al., 2014). We simulated capture histories for each density
with probability of detection at the activity center, p0, set at
0.15. Additionally, we simulated a second set of capture his-
tories at each density that included a trap-specific behav-
ioral covariate on detection, setting initial p0 at 0.07 and
detection probability after first detection (pb) at 0.15, based
on the detection parameters estimated at the La Sal study
area with a trap-specific behavioral covariate on detection
(Appendix S1: Figure S5). We simulated a total of six differ-
ent scenarios with three densities with and without a
behavioral effect for each density. We simulated 500 capture
histories for each scenario. For the three scenarios without

a behavioral effect, we fitted the null model. For the three
scenarios simulated with a behavioral effect, we fitted the
null model and a model with trap-specific behavioral covar-
iate on detection. All models were fitted using a conserva-
tively large 17 km buffer and fine 0.25 km2 state space
resolution. We evaluated bias and confidence interval cov-
erage of density estimates for the nine different models aris-
ing from the six density simulation scenarios.

RESULTS

Ecological model selection

In preliminary model development to determine an ideal
state space buffer size, density estimates stabilized above

TAB L E 3 Comparison of candidate models hypothesized to influence precision, quantified as either standard error (SE) or coefficient of

variation (CV), for spatial capture–recapture (SCR) structural parameter estimates density, baseline detection probability, and sigma

Candidate Model CV SE

Parameter Data Attribute ΔAICc wi ΔAICc wi

Density� Detections 0 1 174.77 0

Recaptures 49.41 0 136.47 0

Unique individuals 82.55 0 166.93 0

Spatial recaptures 95.96 0 107.29 0

Recaptures to detections 211.63 0 19.37 0

Average detections per individual 212.1 0 25.33 0

Average recaptures per individual 213.03 0 0 1

Average spatial recaptures per individual 216.04 0 28.04 0

Spatial recaptures to detections 216.85 0 54.86 0

Detection� Recaptures 0 0.76 6.93 0.03

Individuals with recaptures 2.35 0.24 12.13 0

Individuals with spatial recaptures 16.94 0 0 0.95

Detections 28.61 0 7.72 0.02

Unique individuals 95.42 0 31.16 0

Average detections per individual 165.18 0 74.56 0

Individuals with spatial recaptures to detections 185.5 0 79.46 0

Individuals with spatial recaptures to individuals
with recaptures

189.05 0 70.39 0

Sigma� Individuals with recaptures 0 1 10.82 0

Detections 20.1 0 0 1

Recaptures 55.42 0 31.17 0

Individuals with spatial recaptures 70.95 0 33.24 0

Spatial recaptures 100.32 0 41.69 0

Average spatial recaptures per individual 213.12 0 52.34 0

Spatial recaptures to recaptures 221.17 0 41.6 0

Individuals with spatial recaptures to individuals
with recaptures

221.25 0 23.3 0
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10 km, so we conservatively used a 15 km buffer around
each of our study areas. For each of the five study areas,
comprehensive model selection results are included in
Appendix S1: Tables S1–S3, and we reported the best full
model and associated coefficient estimates for each study
area in Table 2. The best-supported models for density
varied across study areas. For the Kamas and Strawberry
study areas, the best-supported model suggested homoge-
nous density. The Kamas study area had an estimated
density of 3.85 bears/100 km2 (95% CI = 2.85–5.18), and
the Strawberry study area had an estimated density of
4.43 bears/100 km2 (95% CI = 2.76–7.12). Increasing ele-
vation was associated with a decrease in density at the
Boulder (average density of 9.06 bears/100 km2, 95%
CI = 4.65–17.98) and La Sal (average density of 74.33
bears/100 km2, 95% CI = 46.22–128.30) study areas. Den-
sity decreased with increasing canopy cover at the East
Uinta study area (average density of 35.80 bears/100 km2,
95% CI = 12.64–103.52). The La Sal and East Uinta study
areas were among the largest black bear density estimates
recorded in the western USA (Gould et al., 2018),
whereas the other sites fell within a more typical range
for black bear populations in arid habitats (Baldwin &
Bender, 2012; Gould et al., 2018). Variation in density
across years was not supported at any study area.

Top detection models also varied across study areas
(Table 2; Appendix S1: Table S2), although the covariate
quantifying canopy cover around each trap had support
across four of the five areas. Baseline detection probability
estimates ranged from 0.08 to 0.17 and sigma estimates
ranged from 1.33 to 4.18 km across all sites, which are low
but fall within expected ranges based on previous black
bear SCR research (Clark, 2019; Gardner et al., 2010;
Wilton et al., 2014). Year-specific variation in sigma was
supported at the East Uinta and La Sal study areas.

Evaluating precision with empirical
data sets

Using all possible combinations of sampling years avail-
able for each site, we fitted models to seven combinations
of years of data (e.g., 2009, 2010, 2011, 2009 + 2010,
2010 + 2011, 2009 + 2011, and all years) for sites with
3 years of data (Boulder, East Uinta, Strawberry, and La
Sal) and 63 combinations of years of data for the 6 years
of data at the Kamas site. We used canopy cover as a
covariate on baseline detection probability. After elimi-
nating the 2009 model from the East Uinta site, which
did not converge, across all sites and combinations of
sampling years we had 90 estimates of density, baseline
detection probability, and sigma with associated sam-
pling data characteristics and measures of uncertainty

(Figure 2; Schmidt, 2021; CR_summaries_estimates.csv).
The number of individuals detected in a single year
ranged from 6 to 74. Density estimates ranged from 2.32
to 58.05 bears/100 km2 across all sites. Baseline detection
probability estimates ranged from 0.01 to 0.26 and sigma
estimates ranged from 1.50 to 4.68 km across all study
areas.

Relating data set characteristics
to precision metrics

When considering SE as the metric of precision, best-
supported models indicated that increasing the average
number of recaptures per individual decreased the SE of
density (Figure 3a), increasing the number of individuals
with spatial recaptures decreased the SE of detection
(Figure 3b), and increasing the total detections decreased
the SE of sigma (Figure 3c and Table 3; Appendix S3:
Figure S3).

When considering CV as the primary metric of preci-
sion, the best-supported model for precision of the den-
sity estimate suggested that increasing detections best
explained increased precision (Figure 3d). Increasing
precision of the baseline detection probability parameter
was best explained by increasing the number of recap-
tures (Figure 3e). The best-supported model for preci-
sion of the sigma estimate, the spatial scale parameter of
the detection model, suggested a positive relationship
between the number of individuals with recaptures and
sigma precision (Figure 3f).

F I GURE 2 Estimates of density, baseline detection

probability, and sigma at each black bear study area (Boulder, East

Uinta, Kamas, La Sal, Strawberry) for single, partial, and full multi-

year combinations of precision comparison models (n = 90)

ECOLOGICAL APPLICATIONS 9 of 19
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As models included additional years of sampling
data (1–3 years), uncertainty around the density esti-
mate decreased (β = �0.07, 95% CI = �0.06 to �0.09,
p < 0.001), as additional years increased the total num-
ber of detections and recaptures available to inform esti-
mates (Table 1). Visual assessment suggests that, with
more than 3 years of sampling data, which existed only
for the Kamas study area, the decrease in precision con-
ferred by adding years may attenuate (Figure 4). Across
the five study areas, only one of the density estimates
(La Sal, 2011) using 1 year of data met the precision

standard of <0.2 CV. Sampling at the La Sal study area
yielded more detected individuals than the other sam-
pled sites, which resulted in more total detections to
inform SCR structural parameter estimates (average of
87 detections and 22 recaptures per sampling year). For
two of the remaining study areas, Kamas (average of
33 detections and 17 recaptures per sampling year) and
Boulder (average of 26 detections and 10 recaptures per
sampling year), single-year models were insufficiently
precise; however, an additional 2 years of data decreased
uncertainty of estimates such that estimates met the 0.2

F I GURE 3 Best-supported models of capture–recapture data sample sizes associated with structural estimate precision showing

(a) standard error (SE) of the density estimate as a function of average recaptures per individual, (b) SE of the baseline detection estimate as

a function of individuals with spatial recaptures, (c) SE of the sigma estimate as a function of total detections, (d) coefficient of variation

(CV) of the density estimate as a function of total detections, (e) CV of the baseline detection estimate as a function of total recaptures, and

(f) CV of the sigma estimate as a function of the number of individuals with recaptures

10 of 19 SCHMIDT ET AL.
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CV threshold. Strawberry (average of 23 detections and
10 recaptures per sampling year) and East Uinta (average
of 22 detections and six recaptures per sampling year)
study areas both had very sparse single-year data sets that
for some years failed to converge. For these study areas,
multi-year models using 3 years of available data improved
the precision of estimates but did not increase data input
sample sizes enough to decrease CV below 0.2 (Figure 4;
Schmidt, 2021; CR_summaries_estimates.csv). For base-
line detection estimates, Strawberry and Boulder study
areas were sufficiently precise with 1 year of data, whereas
the La Sal study area required 2 years of data, and the
Kamas study area required 3 years of data. The East Uinta
study area detection estimates did not meet the precision
threshold even with models using all 3 years of data avail-
able. Four out of five study areas met the 0.2 CV precision
threshold for sigma estimates with just 1 year of data,
although the East Uinta study area needed 3 years of data
for a sufficiently precise sigma estimate.

Assessing bias through simulations

Density estimates at the La Sal study area (36.94–58.05
bears/100 km2 in precision comparison models, 74.33
bears/100 km2 in best ecological model) were substan-
tially larger than densities reported 20 years prior
(13 bears/100 km2; Frost, 1990). Frost (1990) reported ad
hoc calculations based on intensive trapping in the region
rather than capture–recapture estimates, but provided
the only reported density for this study area prior to this
research. Our SCR density estimates for the La Sal study
area were among the highest reported for black bear
populations in the West (Gould et al., 2018; Mace &
Chilton-Radandt, 2011; Stetz et al., 2014, 2019; Welfelt
et al., 2019). Long-term harvest data from this region
suggested increasing harvests (10 permits and one har-
vest in the La Sal Unit in 1990, 50 permits and 27 harvests

in the La Sal Unit in 2011; Bernales & DeBloois, 2018),
which is usually interpreted as indicative of increasing
abundance (Wolfe et al., 2016). However, our SCR point
estimates for density suggested very large declines in the
abundance of 129–215 bears in a single year, which is
unusual (Table 1). These large fluctuations in abundance
suggested inaccurate results that appeared unrelated to
factors associated with estimate precision, given that La
Sal had the most precise estimates among our precision
comparison models. A trap-specific behavioral term was
strongly supported at the La Sal study area in the ecologi-
cal model selection (Table 2; Appendix S1: Table S2). A
behavioral term in the detection model increased density
estimates relative to models without a behavioral term,
but also increased confidence intervals such that cover-
age of the true density increased (best ecological model:
95% CI = 46.22–128.30; precision comparison model: 95%
CI = 31.32–50.35).

In general, our simulations supported the same rela-
tionships with precision of SCR parameter estimates and
attributes of the sampling data identified in our empirical
data sets (Appendix S2: Figure S4). For the especially low
simulated density of 2 bears/100 km2, very few animals
were detected or recaptured, leading to issues with conver-
gence, estimate precision, and some bias (Appendix S2:
Tables S1–S5). These issues were most closely reflected in
the East Uinta and Strawberry study areas, which also had
low amounts of capture–recapture information. Simula-
tions with a positive trap-specific behavioral term and sim-
ulated densities comparable with the La Sal site
(60 bears/100 km2) included cases with approximately the
same low ratios of spatially recaptured individuals to all
recaptured individuals that we observed in the real data,
although these simulated cases generally had lower sam-
ple sizes of spatial recaptures than the empirical data from
the La Sal study area (Appendix S2: Figure S1). At this
density (60 bears/100 km2), data simulated with a trap-
specific behavioral effect leading to a low ratio of spatially

F I GURE 4 Coefficient of variation (CV) for estimates of density (left), baseline detection probability (middle), and sigma (right), across

1–6 years of sampling data. Note that sampling for >3 years only occurred at the Kamas study area
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recaptured individuals to total recaptured individuals (≤0.3,
5% of simulations, n = 22) produced density point estimates
that were biased high (x = 109.97� 43.68 bears/100 km2)
relative to estimates above this threshold (>0.3) of the
ratio of spatially recaptured individuals to total reca-
ptured individuals (x = 57.71� 18.60 bears/100 km2).
However, estimates had large confidence intervals that
covered the true simulated value despite inaccurate and
mostly high point estimates (Figure 5). Density and
detection estimates had no to low bias for simulation sce-
narios with densities of 20 and 60 bears/100 km2 given
the ratios of spatially recaptured individuals to total reca-
ptured individuals >0.3 and a model specified to match
the simulation (i.e., no behavior simulation fit with a no
behavior model, behavior effect simulation fit with a
behavior model; Appendix S2: Table S3). Sigma estimates
were unbiased under the same conditions, except that at
60 bears/100 km2 and no behavioral effect, sigma esti-
mates had a consistent positive bias, although as noted
above density and detection estimates were unbiased in
this scenario (Appendix S2: Figure S2).

DISCUSSION

Implementing capture–recapture analyses can be a costly,
time-consuming, and computationally intensive process,
and our research provides simple data set summary statis-
tics that provide researchers with early indications of
issues related to estimate uncertainty and inaccuracy
that can inform more effective model implementation.
When sampling wildlife populations that are difficult to
observe, the data collected are rarely plentiful. In a case
in which density estimates were higher than expected, we
identified that a very low proportion of individuals with
spatial recaptures relative to total recaptured individuals
may be a potential signal suggesting when inflated esti-
mates could occur.

We further identified attributes related to the quantity
and quality of input data that influenced SCR model per-
formance. As expected, we found that with a low number
of individuals detected, few recaptures, and few spatial
recaptures, models either failed to converge or produced
estimates that did not meet the objective for the standard
of precision (≤0.2 CV) in a single-year context. Variation
in population patterns across study areas suggests that
model performance and precision can be increased, and
bias mitigated, when SCR sampling and model imple-
mentation strategies are tailored to each sampled popula-
tion. Even for populations of the same species in one
geographic region, ecological differences among habitats
and population dynamics can influence the ability to col-
lect sufficient data. Our simulations demonstrated that

the role of spatial recaptures may be particularly impor-
tant for reducing bias and inflated estimates, even
when density and the number of detected individuals is
relatively high. Additionally, differences among best-
supported full models evaluating landscape heterogeneity
in density among study areas indicated that multiple
study sites capturing different ranges of landscape vari-
ability could reveal conditions in which landscape attri-
butes drove population processes, better informing larger
scale management objectives (Short Bull et al., 2011).
These insights provided additional tools when applying
the SCR framework to wildlife populations of conserva-
tion and management concern.

For density estimates across study areas, associated
precision was sensitive to the total number of detections,
consistent with SCR simulation evaluations (Paterson
et al., 2019). The total number of recaptures was the best-
supported attribute of the sampling data describing varia-
tion in detection estimate precision, and the number of
individuals with recaptures was the best-supported attri-
bute associated with sigma estimate precision. Although
density is the primary parameter of interest to ecologists,
increased precision in the detection model parameter
estimates (i.e., base detection probability, sigma) can
ensure more reliable SCR density estimates (Murphy
et al., 2019). This information may also be useful for stud-
ies in which wildlife connectivity, interactions with
humans, or the interactions of space use and density are
of interest (Efford et al., 2016).

Adding multiple years of data to inform SCR esti-
mates increased all capture–recapture data set sample
sizes considered and, in turn, increased the precision of
the three structural parameter estimates, although
beyond 3 years of data this effect appeared to wane
(Figure 4). For models used to compare estimate preci-
sion, we modeled density as a shared parameter across
years, so that we could evaluate the influence of sampling
data attributes on precision for the parameters of density,
detection, and sigma. However, the best-supported ecologi-
cal models of some study areas did include year-specific
variation (Table 2), and in many cases year-specific parame-
ter estimates, especially density, may be of primary interest
(Morin et al., 2018). When this is the objective a subset of
parameters, such as the detection parameters, could be
shared among years, which is also expected to increase pre-
cision relative to modeling years separately (Appendix 1:
Figure S5, Howe et al., 2013), but the overall decrease in
the CV may be less.

Individual and spatial heterogeneity are important
considerations for SCR estimate reliability and utility.
The top models from each study area supported some
level of heterogeneity in the density, detection, or sigma
parameters, underscoring the importance of obtaining
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sufficient sample sizes to effectively test for spatial, tem-
poral, and individual variation in the population and
observational processes in the SCR model. Previous
research evaluating landscape attributes related to gene

flow in Mountain West black bear populations has shown
that considering multiple study areas that capture greater
variability in landscape features can reveal the conditions
under which some features are supported as influential

F I GURE 5 Ratio of spatially recaptured individuals to all recaptured individuals (i.e., spatial recaptured + recaptured only at trap of

first detection) from simulated data sets with a trap-happy behavioral effect on detection and associated point estimates for (a) density

(bears/100 km2), (b) detection and (c) sigma (km), with the true simulated parameter value indicated by the dashed black line. Capture–
recapture data sets were simulated at 60 bears/100 km2, with a baseline detection of 0.07, with a trap-specific behavioral effect increasing to

0.15 after first detection. We fitted models that did (left column) and did not (right column) include the behavioral term. Sigma was set at

2 km. Color of the estimate indicates that confidence interval coverage for that parameter was below the true value (yellow), encompassed

the true value (green–gray), or was above the true value (dark purple)

ECOLOGICAL APPLICATIONS 13 of 19

 19395582, 2022, 5, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2618, W

iley O
nline L

ibrary on [15/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



to population processes (Short Bull et al., 2011). Even
among study areas with similar habitats, higher variabil-
ity within a study area could explain why a habitat fea-
ture is supported as influential in one study area but not
another. This concept is crucial for managers interested
in applying SCR models describing landscape heteroge-
neity in density from one study area to a larger scale, for
example state-wide management planning.

The best full SCR model for the Kamas study area
(Appendix S1: Table S3) did not include the same
covariates supported in the CR models of Pederson
et al. (2012). It is possible that variation in detection
described by ranked scent attractant and sex in the CR
models were better explained in the SCR framework by
the variation in detection due to the spatial placement of
traps relative to individual activity centers, or by the
other spatial covariates we tested such as canopy cover
around the trap site. Previous research has shown that
unmodeled heterogeneity in the spatial and observational
process models causes negative bias in density estimates
(Gerber & Parmenter, 2015; Howe et al., 2013; Tobler
et al., 2015). This could explain the lower estimated pop-
ulation size at the Kamas study area in Pederson
et al. (2012), which ranged from 15 (95% CI = 12–20) to
22 (95% CI = 19–26) estimated individuals across a
4-year time span relative to SCR point estimates of
40 (95% CI = 20–81) to 87 (95% CI = 50–150) individuals
across the same time span. Importantly, the CR and SCR
estimates are not directly comparable, because SCR refers
to the number of activity centers within the state space,
whereas CR estimates refer to the superpopulation in an
undefined area (Kendall, 1999).

Sampling years at the La Sal study area when fewer
individuals were detected and there was a low ratio of spa-
tially recaptured individuals to total recaptured individuals
yielded higher density and lower sigma estimates (Table 1).
We observed a similar pattern at the East Uinta study area,
although the scant data from the East Uinta sampling years
created more obvious issues with model convergence in
precision comparison models and unreliable estimates in
the best-supported ecological model (average density of
35.80 bears/100 km2, 95% CI = 12.64–103.52). Ecological
model selection supported a trap-specific behavioral effect
on the detection process at the La Sal study area. In this
more fully specified model, density estimates increased rel-
ative to models lacking a behavioral effect and confidence
intervals increased, suggesting that this further reduced
point estimate accuracy. Our simulations further supported
the idea that in some populations with a behavioral
response, overly large density estimates can occur when
the ratio of individuals with spatial recaptures to all indi-
viduals with recaptures is low (<0.3), potentially reducing
the mean distance among recaptures and the activity

center and constraining sigma estimates. Therefore, we sus-
pect that the La Sal estimates with the trap behavior are
biased high.

Observational or ecological processes could be
responsible for individuals caught repeatedly at one trap
without any spatial recaptures. Large numbers of recap-
tures at the same trap can occur when there is a “trap-
happy” behavioral response to a sampling site. At the La
Sal study area, this behavior could have been a response
to scent attractant placed at the hair collection corrals, or
the activity range could be constrained by hunting and
pursuit with dogs that is prevalent at this study area dur-
ing the spring, summer, and fall. In some instances, this
behavioral response could temporarily reduce the size of
the activity range and therefore inflate density estimates.

In the distance sampling literature, best practices exist
to account for sampling biases using both left and right
truncation of distance data (Alldredge & Gates, 1985;
Borchers et al., 2006; Howe et al., 2017), and left trunca-
tion can be used to reduce both negative and positive bias
(Beaver et al., 2014; Ruette et al., 2003). Right truncation
of samples at large distances has been used in SCR model-
ing when movements far exceeded those representative of
the general population (Kendall et al., 2019). Left trunca-
tion of spatial recapture distances has not been explored in
the SCR literature, but could be a useful method to
account for positive bias in the detection model incurred
by the sampling data. For example, if individuals have an
excessive number of repeated recaptures at one trap across
multiple sampling occasions, it may be useful to assess the
sensitivity of density to removal of one or more same-site
recaptures. However, if the number of spatial recaptures is
simply too low, truncation may not be an appropriate
method to resolve bias. Our empirical results and simula-
tions suggested that more than three spatial recaptures
were needed for models to converge and to avoid gross
overestimations of density. If there are very few spatial
recaptures, incorporating additional data sources to inform
space use and the detection model, such as telemetry data
(Royle, Chandler, Sun, et al., 2013; Sutherland et al.,
2019), may be the only way to address this issue.

Our results build on previous studies exploring the
performance of SCR models, adding to current best prac-
tices in the SCR data collection and analysis workflow
(Table 4). Trap spacing of 2σ or smaller and a trapping
extent greater than one individual home range are basic
requirements for avoiding biased estimates and ensuring
adequate sample sizes of detections and spatial recap-
tures for model convergence (Clark, 2019; Sollmann
et al., 2012; Sun et al., 2014). Additionally, a clustered
sampling approach can cover greater spatial extents to
sample more individuals, while still allowing for spatial
recaptures to estimate sigma (Clark, 2019). This strategy
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would probably be most effective at increasing the number
of short-distance spatial recaptures, and therefore best
suited to higher density populations with small home
ranges. Baited traps can be used in SCR sampling designs
(Humm et al., 2017; Molina et al., 2017; Pederson
et al., 2012; Welfelt et al., 2019), but the work presented
here suggests that, although this strategy can increase
detections, it may result in unreliable estimates if spatial

recaptures do not also increase relative to same-trap detec-
tions. Additional traps that are close to each other may
help to address this issue. A transect or search-encounter
sampling design in which recaptures at the same location
are limited could be beneficial for avoiding a behavioral
response to trap arrays, if feasible. However, Efford (2019)
cautioned that this sampling design could incur strong bias
if animal home ranges are uniformly elongated due to two-

TAB L E 4 A workflow of SCR best practices

Issue Suggested approach Reference

Study design

Effective trap array design Trap spacing <2σ, trapping extent >one
home range, consider clustered
approach, moving traps between
sampling sessions, transect design,
implications of using bait and
whether a behavioral response is
expected to occur

Clark (2019), Sollmann et al. (2012),
Sun et al. (2014), This study

Require precise estimates Evaluate expected precision based on
expected parameter estimates to
optimize design

Dupont et al. (2021), Efford and
Boulanger (2019)

Low sample size expected Provision for additional data sources
including telemetry data and
additional sampling sessions, or
consider multiple detection methods

Howe et al. (2013), Morehouse and
Boyce (2016), Paterson et al. (2019),
Welfelt et al. (2019)

Evaluating influence of landscape
heterogeneity on density and
detection

Incorporate multiple sites within a
management area that capture
ranges of variability of landscape
features of interest to determine
whether patterns are present under
different conditions

Short Bull et al. (2011), This study

Data evaluation

Sufficient data for effective SCR
implementation

Evaluate attributes of the sampling
data, including no. detections,
recaptures, and the proportion of
individuals with spatial recaptures
to all individuals with recaptures

Morin et al. (2018), Efford and
Boulanger (2019), This study

Large spatial recapture distances
affect sigma estimate

Evaluate maximum distance moved by
year to look for outliers, consider left
or right truncation

Kendall et al. (2019), This study

Model implementation

Low sample size precludes
convergence

Integrate additional data sources
including additional sampling
sessions

Howe et al. (2013), Morehouse and
Boyce (2016), Royle, Chandler,
Gazenksi, et al. (2013)

Potential bias incurred from spatial
recaptures

Test sensitivity of estimates to left and
right truncation, if unable to
address, consider implications for
estimate interpretation

Kendall et al. (2019), This study

Potential bias incurred from
heterogeneity in detection and
density

Adequately identify and model sources
of heterogeneity. The ability to do
this may be dependent on
integrating additional data sources

Efford (2019), Howe et al. (2013)
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dimensional habitat features. Efford and Boulanger (2019)
proposed that an evaluation of expected sample sizes of
individuals and recaptures using simulations can be
related to expected precision, which can be used to
inform optimal SCR sampling design. Similarly, Dupont
et al. (2021) further identified a genetic algorithm that
optimized an objective function related to estimator pre-
cision to more quickly identify an optimal design based
on a goal of maximizing the number of individuals
detected, the number of spatial recaptures, or a balance
of these two criteria. Finally, multiple study areas can be
used to better capture variability in landscape features
when landscape heterogeneity in density is being evalu-
ated or when inference across a larger landscape is of
interest (Short Bull et al., 2011).

Once SCR sampling data are collected, evaluating
available sample sizes and sampling data attributes can
inform model implementation and evaluation. The impor-
tance of multiple years of sampling data to increasing the
precision of SCR parameter estimates in our case study
reinforces the importance of identifying potential addi-
tional data. These could be in the form of multiple sam-
pling years (Howe et al., 2013; Morehouse & Boyce, 2016;
Morin et al., 2018), an increased number of sampling occa-
sions within years (Clark, 2019), telemetry data (Royle,
Chandler, Sun, et al., 2013), or other additional sources of
detection data such as live trapping or harvest data
(Paterson, 2019; Welfelt et al., 2019). Incorporating addi-
tional data sources can ensure that models can still be
fitted and that results are sufficiently precise, even when
capture–recapture data are scant or populations are small.
Additional data can be both temporal and spatial, and
other studies have explored sharing detection and sigma
parameters across spatially separate sites to collectively
improve SCR estimates (Horn et al., 2020; Howe
et al., 2013; Morin et al., 2018). However, if habitat quality
varies across the sites, this could potentially influence
sigma (Efford et al., 2016).

Recent SCR research has increasingly targeted methods
to increase the precision of model estimates (Clark, 2019;
Dupont et al., 2021; Efford & Boulanger, 2019; Kristensen
& Kovach, 2018; Morin et al., 2018). Our research high-
lights factors associated with SCR parameter estimate
precision, given sparse, realistic data sets and provides
approaches to increase precision and to explore potential
sources of bias in the sampling data that could influence
point estimate accuracy. The black bear study areas consid-
ered in our analyses were sampled with a limited, but rea-
sonable, trap array design that yielded a range of sample
sizes typical of capture–recapture studies targeting low-den-
sity, wide-ranging carnivore species (Gardner et al., 2010;
Molina et al., 2017; Wilton et al., 2014). With our multi-site
approach, we found that, even within one geographic

region where five areas were sampled using the same study
design, resulting data sets varied in total detections, unique
individuals, and recaptures. Additionally, resulting best-
supported ecological models varied in covariates that were
influential to the observation and density components of
the model. Therefore, in addition to previously identified
best practices for SCR study design, we suggest collecting
supplemental data, which could include additional move-
ment data or capture–recapture sampling years to inform
sparse data sets and account for potential sampling issues
that may arise. Through developing a set of best practices
(Table 4) spanning the complete SCR workflow of study
design, data collection and evaluation, and model imple-
mentation, researchers can increase their confidence that
resulting parameter estimates are accurate and sufficiently
precise to provide useful information to ecologists and
managers.
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