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Abstract

Aerial vehicles equipped with infrared thermal sensors facilitate quick density

estimates of wildlife, but detection error can arise from the thermal sensor and

viewer of the infrared video. We reviewed published research to determine how

commonly these sources of error have been assessed in studies using infrared

video from aerial platforms to sample wildlife. The number of annual articles

pertaining to aerial sampling using infrared thermography has increased drasti-

cally since 2018, but past studies inconsistently assessed sources of imperfect

detection. We illustrate the importance of accounting for some of these types

of error in a case study on white-tailed deer Odocoileus virginianus in Indiana,

USA, using a simple double-observer approach. In our case study, we found

evidence of false negatives associated with the viewer of infrared video. Addi-

tionally, we found that concordance between the detections of two viewers

increased when using a red-green-blue camera paired with the infrared thermal

sensor, when altitude decreased and when more stringent criteria were used to

classify thermal signatures as deer. We encourage future managers and ecolo-

gists recording infrared video from aerial platforms to use double-observer

methods to account for viewer-induced false negatives when video is manually

viewed by humans. We also recommend combining infrared video with red-

green-blue video to reduce false positives, applying stringent verification stan-

dards to detections in infrared and red-green-blue video and collecting data at

lower altitudes over snow when needed.

Introduction

Aerial platforms are commonly used for surveying in

wildlife research and management (Hone, 2008; Pollock

& Kendall, 1987). Sampling animals from an aerial plat-

form facilitates quick population estimates (McMahon

et al., 2021). Traditionally, aerial sampling has been per-

formed by human observers who ride in a plane or heli-

copter and detect animals out the sides of the aircraft

(Pollock & Kendall, 1987). Collecting data and estimating

density under various distance-sampling, mark–recapture
or a combination of these two frameworks has thus been

common (Barker, 2008; Fewster & Pople, 2008).

Infrared (IR) thermography, in which thermal cameras

capture images from infrared radiation emitted from

objects, has been adopted by wildlife researchers to

estimate population abundance (Havens & Sharp, 2015).

In the context of aerial sampling, thermal sensors have

been oriented two different ways when used to detect ani-

mals: (1) forward-looking infrared (FLIR) thermal sen-

sors, which look forward from the aerial vehicle at

oblique angles (Storm et al., 2011; Sudholz et al., 2021)

and (2) vertical-looking infrared (VLIR) thermal sensors,

which look directly beneath the aircraft (i.e. nadir orien-

tation; Kissell & Nimmo, 2011).

Using IR thermal sensors to sample wildlife may intro-

duce error from at least two sources. First, the thermal

sensor may yield false-negative errors by failing to detect

animals. Similar to Brack et al. (2018), we refer to these

as availability errors. Poor or no thermal contrast (e.g.

thick vegetation, lack of cloud cover (resulting in poor

thermal contrast) or overhangs) induce availability errors
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(Havens & Sharp, 2015). Therefore, study designs often

consider weather and altitude to minimize the potential

of availability errors. The use of VLIR instead of FLIR

also can help to alleviate availability errors caused by veg-

etative obstruction because the distance and angle, and

thereby the amount of vegetative or topographical

obstruction, between the thermal sensor and animal is les-

ser (Kissell & Nimmo, 2011). In general, strategies to

account for availability errors seem logistically challenging

(discussed more below).

Other sources of error can arise while viewing the IR

video if viewers incorrectly classify IR signatures (Stander

et al., 2021). Specifically, false positives and negatives can

be caused by the viewer or automated classification algo-

rithm. Similar to Brack et al. (2018), we refer to false pos-

itives and negatives from the viewer as misidentification

errors and perception errors, respectively. Because of the

potential for misidentification errors, some researchers

have simultaneously captured high-resolution red-green-

blue (RGB) digital imagery with IR video, which is then

used to confirm heat signatures as the target species

(Franke et al., 2012; Schoenecker et al., 2018). An addi-

tional type of false positive can occur from double count-

ing. Double counting can arise from overlapping

transects, successive images containing the same individ-

ual, or animal movement in between neighboring tran-

sects (Brack et al., 2018; discussed more below).

We conducted a literature review to determine how fre-

quently the aforementioned types of errors have been

addressed in wildlife research using thermal sensors from

aerial platforms. We then illustrated the potential impor-

tance of viewer errors in a case study where we simulta-

neously captured VLIR and RGB video across three

different regions of Indiana, USA. To evaluate the magni-

tude and impact of perception errors in IR sampling, we

estimated the density of white-tailed deer Odocoileus vir-

ginianus using the detections of two viewers and a single

viewer. To assess the effects of study design on the con-

cordance of IR detections, we computed density using

video collected at multiple altitudes and differing ground

conditions. Lastly, to better understand the importance of

confirming IR signatures with RGB video, we estimated

densities using: (1) only IR video and (2) IR and RGB

video.

Materials and Methods

Literature review

We reviewed published studies that used thermal sensors

to study wildlife from aerial vehicles by conducting the

following keyword search on Web of Science™ on 1 Jan-

uary 2022: “(thermal OR infrared) AND wildlife AND

(aerial OR plane OR airplane OR helicopter OR

unmanned OR drone)”. For each article, we recorded: (1)

year of publication; (2) whether the study pertained to

behavior, presence/absence, simple counts or density/

abundance estimation; (3) if imperfect detection was

addressed in any way, and if so, whether uniform detec-

tion across the field-of-view of the camera, availability

errors, perception errors, misidentification errors or

double-counting errors was addressed; (4) if photos,

video or active searching was used to collect data; (5)

thermal sensor orientation (forward-looking or vertical-

looking); (6) if IR, RGB or IR and RGB video was

recorded; (7) if the aerial vehicle was crewed or uncrewed

and (8) if automated software, human viewers or auto-

mated software and human viewers were used to review

video and detect the target species. We did not include

articles that used data from only simulation, did not per-

tain to wildlife, did not use an aerial vehicle, were not

fully available for review (e.g. only abstracts available), or

previous review articles without a case study.

Case study

Study sites

We sampled deer populations in Indiana’s Deer Regional

Management Units 3, 4 and 9 (Delisle et al., 2022; Swihart

et al., 2020). We surveyed two different 6.4 × 6.4-km areas

within each Regional Management Unit (hereafter, RMU),

resulting in six total areas flown (Fig. 1). We randomly

selected these areas from the deer reporting grid used by

the Indiana Department of Natural Resources to collect

spatially explicit harvest data. Regional Management Unit

3 is an intensively farmed region with 79% row-crop agri-

culture, 10% forest, 3% grassland and 1% wetland. Unlike

RMU 3, RMU 4 is mainly forested with 19% row-crop

agriculture, 56% forest, 16% grassland and <1% wetland.

Lastly, RMU 9 is 56% row-crop agriculture, 8% forest,

11% grassland and 13% wetland. All three RMUs follow a

four-season temperate weather pattern.

Data collection

In each sampling area, we flew 16 systematically placed

6.4-km transects. Adjacent transects were separated by

400 m and aligned north to south. We flew transects in a

Sky Arrow Light Sport Aircraft (Magnaghi Aeronautica

S.p.A.) at speeds of ~105 kph. We flew at an altitude of

450 m in RMU 3 when there was snow cover, an altitude

of 450 m in RMU 4 when there was no snow cover, and

an altitude of 300 m when there was snow cover in RMU

9. Flights occurred during daytime hours (30 min after

sunrise to 30 min before sunset) from 8 February to 10
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March 2021 when deciduous trees had already shed

leaves. We surveyed during daytime so RGB video could

be captured simultaneously. Regardless of ground condi-

tion or altitude, we only collected aerial data on overcast

days while flying under cloud cover, which heightened

the thermal contrast between background temperatures

and body temperatures of deer.

During flights, we recorded VLIR and RGB video using

an IR-TCM HD 1024 stationary thermal sensor equipped

with a 60 mm lens (Jenoptik, Jena, Germany), and a

Nikon D810 DSLR camera equipped with a Nikon AF

DC-NIKKOR 135 mm f/2D lens (Nikon Inc., Melville,

NY). Cameras were affixed to opposite sides of the air-

craft and focused on the ground directly beneath the air-

craft. We simultaneously recorded IR and RGB video

while georeferencing and digitally storing the video using

a GeoDVR Mini (Remote GeoSystems, Inc.) equipped

with a Garmin global positioning system (Garmin Ltd.).

We viewed IR and RGB video using the LineVision –
Ultimate software (Remote GeoSystems, Inc.). While

viewing video, two independent viewers that were highly

trained and experienced in viewing IR video (3 sampling

seasons of experience) recorded four different qualitative

classes of detections (Fig. 2): (1) detections from IR video

for which the heat signature had any potential to be a

deer but the viewer was not confident that the heat signa-

ture was a deer (lenient IR detections); (2) detections

from IR video in which the viewer was confident that the

heat signature was from a deer (stringent IR detections);

(3) RGB confirmations of lenient or stringent IR heat sig-

natures in which the object in the RGB video had any

potential to be a deer but the viewer was not confident

the object was a deer (lenient RGB confirmations) and

(4) RGB confirmations of lenient or stringent IR heat sig-

natures in which the viewer was confident that the object

in the RGB video was a deer (stringent RGB confirma-

tions). When assigning IR heat signatures or RGB objects,

stringent detections were those with a shape that was

clearly defined and unambiguous so that we believed no

other object than a deer could be producing such an IR

heat signature or RGB object. No other species of similar

shape and color to that of white-tailed deer were present

in our field site. To avoid bias, the two viewers scored

videos independently (i.e. did not aid each other when

classifying images) and only defined an RGB confirmation

as either 3 or 4 after first defining an IR detection as 1 or

2 (Fig. 2). For all detections, we recorded whether or not

the detection was within concealed (forest, wetland) or

open (grassland, agricultural field) habitat. We used the

LineVision – Ultimate software to measure the perpendic-

ular distance from the middle of the thermal sensor’s

field-of-view to the IR heat signature. Lastly, we recorded

how many other lenient or stringent IR detections were

within the immediate vicinity of the IR detection (hence-

forth referred to as group size). We considered IR detec-

tions to be in the immediate vicinity of each other if the

detections could appear in the field-of-view of the ther-

mal sensor at the same time.

We compiled four detection histories using these four

detection classes: (1) detection history using lenient and

stringent IR detections; (2) detection history using only

stringent IR detections; (3) detection history using lenient

or stringent RGB confirmations of lenient or stringent IR

Figure 1. Sampling areas within the Deer Regional Management

Units (RMU) of Indiana, USA, that we surveyed. White-tailed deer

Odocoileus virginianus were detected using thermal and color sensors

in a crewed aerial platform during daylight hours from 8 February to

10 March 2021.
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detections and (4) detection history using stringent RGB

confirmations of lenient or stringent IR detections. We

did not assess a scenario in which RGB was used to only

confirm stringent IR detections because if RGB is avail-

able, we would expect users to check all potential IR heat

signatures.

Single viewer

We estimated density from the four different types of

detection histories using the observations of a single

viewer (ZJD) in each of the altitudes and ground condi-

tions we sampled. We first considered the possibility that

detection probability decreased with increasing distance

from the middle of the thermal sensor’s field-of-view.

However, we found evidence that detection probability

across the field-of-view was uniform according to

Akaike’s Information Criterion (AIC) and visual plots of

several candidate detection functions (see Supporting

Information: Distance Sampling Analysis for more

details). Therefore, we used plot sampling techniques to

estimate density (Buckland et al., 2015) with the following

formula:

D̂ ¼ n

A
(1)

where n = the total number detections, A = the total area

sampled = Lw2, where L = the total length of transect

sampled and w = the transect half width. Because the

variation from plot sampling techniques comes from the

encounter rate (i.e. there is no variation from a detection

function), we used an approach modified from the ‘R2’

Figure 2. Workflow for classifying infrared (IR) heat signatures and corresponding objects in red-green-blue (RGB) as either white-tailed deer

Odocoileus virginianus, not deer or unsure. Video was captured in a crewed aircraft in Indiana, USA, from 8 February to 10 March 2021. All

potential IR heat signatures are classified as either lenient IR detections (defined as detections from IR video for which the heat signature had any

potential to be a deer but the viewer was not confident the heat signature was a deer) or stringent IR detections (defined as detections from IR

video in which the viewer was confident that the heat signature was from a deer). All RGB confirmations were classified as either lenient RGB

confirmations (defined as RGB confirmations of lenient IR heat signatures in which the object in the RGB video had any potential to be a deer but

the viewer was not confident the object was a deer) or stringent RGB confirmations (defined as RGB confirmations of lenient IR heat signatures in

which the viewer was confident that the object in the RGB video was a deer). When assigning IR heat signatures or RGB objects, stringent detec-

tions were those with a shape that was clearly defined and unambiguous so that we believed no other object than a deer could be producing

such an IR heat signature or RGB object. No other species of similar shape and color to that of white-tailed deer were present in our field site.
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method in Fewster et al. (2009) to estimate the standard

error as

SE D̂
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

A2 K�1ð Þ ∑
K

k¼1

a2k
nk
ak

� n

A

� �2
s

(2)

where K = the total number of transects, ak = the total

area sampled on transect k and nk = the total number of

detections on transect k.

Double viewer

To ensure that the detection and error rates of the

double- and single-viewer methods were directly compa-

rable, we used the detections from the single viewer as

one of the double viewers. We calculated the concordance

between the two viewers (ZJD and PGM) for all four

detection histories at each altitude and ground condition.

To assess the need for RGB video, we determined the per-

centage of stringent and lenient IR detections that were

confirmed by RGB video to be deer, an object other than

deer or unresolved. We evaluated the value of multiple

viewers by calculating the probability of a single viewer

detecting a deer conditional upon the other viewer, and

the probability of either viewer detecting the deer using

the ‘mrds’ package (Laake et al., 2022) in R (R Core

Team, 2022). Specifically, we fit logistic conditional detec-

tion models with a logit link in the form of eq. 6.32 in

Laake and Borchers (2004). We used an independent

observer configuration and assumed full independence

(Burt et al., 2014). We fit a mark–recapture model for

each possible additive combination of the following

covariates: distance from the transect line, group size and

observer (viewer 1 or viewer 2). We used AIC to decide

between competing mark-recapture models. We repeated

this model fitting process for each of the four different

types of detection histories in each of the altitudes and

ground conditions we sampled. We did not test the effect

of habitat type (open vs. concealed) on detection proba-

bility because we detected too few deer in open habitat.

Additionally, we purposefully sampled when there was no

leaf cover in the canopy to avoid reduced probability of

infrared detection in wooded areas.

After selecting the best mark–recapture model, we esti-

mated density in the sampled area using a Horvitz-

Thompson-like estimator (Borchers et al., 1998) in the

‘mrds’ R package. Variation from the mark–recapture
model was estimated using the delta method (Borchers

et al., 1998), and variation from the random sample selec-

tion was estimated using the encounter-rate estimator in

Innes et al. (2002) in the form of the ‘R2’ method in

Fewster et al. (2009).

Results

Literature review

Our search revealed 62 articles on the use of IR ther-

mography in aerial sampling of wildlife since 1991. The

number of articles increased sharply from 2018 to 2021

(Fig. S2). Uncrewed aerial vehicles have shown a particu-

larly pronounced increase in usage, which is consistent

with past reviews focused on uncrewed aerial vehicles

(Linchant et al., 2015). Although the usage of dual plat-

forms containing IR and RGB cameras has increased

since 1991, only nine of 23 articles estimating density or

abundance used a dual platform; two of these articles

did not use RGB to confirm IR heat signatures, but

instead assessed whether or not RGB could solely be used

to estimate density. Two articles did not specify if they

used FLIR or VLIR. Of the 62 articles we reviewed, 19

did not address any type of error, 16 addressed one type

of error, 18 addressed two types of error, eight addressed

three types of error, one addressed four types of error

and no articles addressed all five types of error. Twenty-

four articles used photos, 32 articles used video and 16

articles used active searching methods to locate IR heat

signatures.

Imperfect detection across the field-of-view of the ther-

mal sensor was assessed by seven articles; availability

errors were addressed by 19 articles; perception errors

were addressed by nine articles; misidentification errors

were addressed by 34 articles and double-counting errors

were addressed by 11 articles. Perfect detection across the

field-of-view of the thermal sensor was found in four of

seven (57%) of the articles that tested for uniform detec-

tion probability. Sixteen of the 23 articles (70%) estimat-

ing density assessed imperfect detection to some degree.

Of these, seven assessed uniform detection probability

across the camera’s field-of-view, five addressed availabil-

ity errors, two addressed perception errors, nine

addressed misidentification errors and six addressed

double-counting errors (Table 1).

Case study

Across the four classes of detection histories, concordance

between the two viewers increased when altitude was

lower and when snow covered the ground (Table 2). We

were unable to confirm IR signatures using RGB video in

the areas that did not have snow cover on the ground,

and therefore we do not present any statistics for the leni-

ent IR with lenient or stringent RGB confirmation histo-

ries for this sampling scenario. At altitudes of 300 m,

77.2% (SE = 4.5), 6.5% (SE = 3.6) and 16.4% (SE = 0.9) of

stringent IR detections were confirmed to be deer, not
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deer or unresolved, respectively, and 19.7% (SE = 6.6),

60.6% (SE = 13.3) and 19.7% (SE = 6.6) of lenient IR

detections were confirmed to be deer, not deer or unre-

solved, respectively. At altitudes of 450 m, 81.8% (SE =
0.9), 10.2% (SE = 4.3) and 8.1% (SE = 5.2) of stringent IR

detections were confirmed to be deer, not deer or unre-

solved, respectively, and 21.1% (SE = 21.1), 54.0% (SE =
4.0) and 25.0% (SE = 25.0) of lenient IR detections were

confirmed to be deer, not deer or unresolved, respec-

tively.

Across all ground conditions, altitudes and detection

histories, the probabilities of either of two viewers detect-

ing a heat signature were on average 3.9% (SE = 1.6) lar-

ger than the probabilities of viewer 1 detecting a heat

signature (Table 3). At 300 m altitude, the probability of

detection remained fairly consistent across the different

detection histories. However, at 450 m altitude, probabil-

ity of detection differed between the detection histories,

with increasing certainty thresholds of objects in the IR

and RGB video associated with lower detection probabil-

ity (Table 3).

The densities and AIC-best mark–recapture models for

each of the four detection histories at each altitude and

ground condition are presented in Table 3 and Table 4,

respectively. Observer was the only covariate in each of

the AIC-best mark–recapture models. The densities across

all ground conditions, altitudes and classes of detection

histories from the mark–recapture estimator were on

average 9.2% (SE = 2.8) larger than the density estimates

that used the detections from a single viewer (Table 3).

Unlike detection probability, the densities across different

detection histories at 450 m altitude were fairly consis-

tent, but the densities at 300 m altitude differed among

classes of detection histories. Increasing certainty thresh-

olds of objects in the IR and RGB video captured at

300 m resulted in lower density estimates.

Discussion

We found that RGB video confirmation, lower altitudes,

snow cover and increasing levels of object scrutiny sub-

stantially increased concordance between our two viewers.

Table 1. Contingency table reporting the total number of articles that: used forward-looking or vertical-looking infrared thermography; did not

assess imperfect detection; assessed imperfect detection in terms of uniform detection probability across the field-of-view of the thermal sensor

(Uniform), availability errors (AE), perception errors (PE), misidentification errors (ME) or double-counting errors (Double); used infrared (IR), red-

green-blue (RGB) or IR and RGB cameras; used crewed or uncrewed aircraft and used automated viewing software (AI), manual human viewing

(human) or both AI and human.

Platform orientation Forward looking Vertical looking

Aircraft Sensor Review

Assess detection? Assess detection

No Uniform AE PE ME Double No Uniform AE PE ME Double Subtotal

Crewed IR AI 0 0 0 0 0 0 0 0 0 0 0 0 0

Human 6 0 3 0 1 2 2 2 1 0 1 2 15

Both 0 0 0 0 0 0 0 1 0 1 1 0 1

RGB AI 0 0 0 0 0 0 0 0 0 0 0 0 0

IR + RGB Human 0 0 0 0 0 0 0 0 0 0 0 0 0

Both 0 0 0 0 0 0 0 0 0 0 0 0 0

AI 0 0 0 0 0 0 0 0 0 0 0 0 0

Human 0 0 0 0 1 1 1 2 2 0 6 1 8

Both 1 0 0 0 0 0 0 1 0 2 2 0 3

Uncrewed IR AI 0 0 0 0 0 0 0 0 0 0 0 0 0

Human 3 0 1 0 5 0 3 1 0 0 1 2 14

Both 0 0 0 0 0 0 1 0 2 2 3 2 4

RGB AI 0 0 0 0 0 0 0 0 0 0 0 0 0

Human 0 0 0 0 0 0 0 0 0 0 0 0 0

Both 0 0 0 0 0 0 0 0 1 0 0 0 1

IR + RGB AI 0 0 0 0 1 0 0 0 0 0 0 0 1

Human 1 0 2 1 2 0 0 0 5 1 8 0 11

Both 0 0 0 0 0 0 0 0 1 2 2 0 2

Subtotal 11 0 6 1 10 3 7 7 12 8 24 7 60

Categories are mutually exclusive (e.g. an article using IR and RGB cameras would not satisfy the individual IR and RGB categories). Articles were

obtained through a Web of Science™ search conducted on 1 January 2022 for the following: “(thermal OR infrared) AND wildlife AND (aerial OR

plane OR airplane OR helicopter OR unmanned OR drone)”.
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Consequently, we strongly encourage future researchers to

apply stringent verification standards and RGB confirma-

tion to data collected from low-altitude flights over snow

when surveying in similar study areas and for comparable

species. Classifying IR heat signatures as deer is a viewer-

dependent task, and thus contains a degree of subjectivity.

Indeed, concordance between our two viewers dropped to

as low as 30% in areas that did not have snow cover,

regardless of detection history, even though both viewers

had undergone extensive training to examine IR video

that we captured from aerial platforms. Other studies

have reported lack of concordance between the classifica-

tions of multiple viewers of both aerial video (Beaver

et al., 2020; Preston et al., 2021) and other types of popu-

lation data (Delisle et al., 2022). In instances when high

certainty cannot be obtained due to the natural history of

the target species (e.g. arboreal species inhabiting dense

canopies or little color contrast between the animal and

background; Corcoran et al., 2019), ground truthing may

be required.

Similar to others, our literature review revealed that

uncrewed aerial vehicles are increasingly popular in wild-

life monitoring (Linchant et al., 2015). One major advan-

tage of these vehicles is the capability of flying at much

lower altitudes compared to crewed aircraft, which helps

to increase video quality and thus reduce misidentifica-

tion and perception errors (Linchant et al., 2015). If

battery life is of no concern, some researchers have even

reduced altitude upon detection of a potential heat signa-

ture in non-forested habitats, and honed in for more cer-

tain confirmation (Smith et al., 2020). Furthermore,

crewed aerial vehicle accidents account for 66% of wildlife

biologist deaths while on the job (Sasse, 2003). Uncrewed

aerial vehicles are a much safer alternative. Lastly,

uncrewed aerial vehicles have an appealing ease of use,

which facilitates quick data collection (McMahon

et al., 2021). That being said, large-scale management

may still struggle to efficiently sample with uncrewed aer-

ial vehicles due to line-of-sight restrictions and short bat-

tery life (Linchant et al., 2015). Practical application over

large extents likely will require improved battery life and

more lenient regulations pertaining to line-of-sight opera-

tion.

We tested the effects of ground condition (snow vs.

bare) and altitude on the ability to use RGB video to con-

firm heat signatures. Because we did not sample the same

areas repeatedly at different altitudes and ground condi-

tions, we were unable to infer how detection probability

changes as a function of altitude and ground condition.

Flight speed is an additional variable of interest to wildlife

managers using aerial methods. Although we attempted

to fly surveys at a constant speed to ensure repeatability,

the ability to effectively sample at faster flight speeds

would be more cost and time efficient, and may also facil-

itate sampling larger areas. Therefore, we encourage

future researchers to examine the effects of altitude and

ground condition on detection probability, and the effects

of flight speed on the efficacy of RGB confirmation, con-

cordance between independent observers and detection

probability.

Simultaneously capturing IR and RGB video increases

logistical difficulties and monetary costs associated with

aerial sampling. Logistically, synchronizing the two video

streams to ensure viewers can examine the same image in

IR and RGB could prove difficult to non-experts (Bushaw

et al., 2020). We used the GeoDVR Mini to simultane-

ously capture, georeference and store IR and RGB video

streams, which required little technical expertise. Addi-

tionally, the GeoDVR Mini named and stored video files

for simultaneous examination of images in IR and RGB

bands within the LineVision – Ultimate software. We thus

avoided the step of manually lining up two separate video

streams, which can be challenging for large video files.

Monetarily, the purchase of an additional RGB camera

increased the cost of sampling. However, the added cost

of the RGB camera ($4089 USD) was small compared to

the IR thermal sensor ($33 488 USD). The additional cost

was essential, as RGB confirmation substantially improved

our object classifications. Other researchers surveying for

species inhabiting more open habitat may only need RGB

Table 2. Concordance between two viewers’ detections of white-

tailed deer Odocoileus virginianus from aerially captured infrared (IR)

and red-green-blue (RGB) video collected in Indiana, USA, from 8

February to 10 March 2021.

Ground Altitude A B C D

Snow 300 70.81 72.98 81.68 86.02

Snow 450 56.10 56.10 61.79 55.28

Bare 450 31.30 43.48 NA NA

Both videos were simultaneously captured on an aircraft flown at two

different altitudes and over two different ground conditions. Viewers

detected deer under four different scenarios: (A) detections from only

IR video for which the heat signature had any potential to be a deer;

(B) detections from only IR video in which the viewer was confident

that the heat signature was from a deer; (C) RGB confirmations of

any IR heat signatures in which the object in the RGB video had any

potential to be a deer and (D) RGB confirmations of any IR heat signa-

tures where viewers were confident that the object in the RGB video

was a deer. Concordance is not reported for C or D at 450 m altitude

over bare ground because we were unable to utilize RGB video in

these conditions. When assigning IR heat signatures or RGB objects,

stringent detections were those with a shape that was clearly defined

and unambiguous so that we believed no other object than a deer

could be producing such an IR heat signature or RGB object. No other

species of similar shape and color to that of white-tailed deer were

present in our field site.
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video if the target individuals are large enough or colored

to be easily distinguishable from the background terrain

(e.g. Edwards et al., 2021). If surveys include multiple

species producing indistinguishable heat signatures (e.g.

Gentle et al., 2018), RGB video may facilitate species clas-

sification (Lee et al., 2019).

False positive and negative errors can affect bias and

precision of occupancy and density estimates (Miller

et al., 2011; Otis et al., 1978; Royle & Link, 2006; Strick-

faden et al., 2020). In the context of aerial sampling with

thermal sensors, availability errors can arise from the

thermal sensor when the thermal sensor fails to capture

the IR heat signature of an animal within the field-of-

view (Bushaw et al., 2020). Perception errors arise when

the viewer, or automated viewing software, fails to detect

an IR heat signature that is present in the video stream

(Preston et al., 2021). Strategies to specifically account for

perception errors are few and vary in terms of their valid-

ity. Manual viewing has been used to count perception

errors from automated software (e.g. Conn et al., 2021;

Lethbridge et al., 2019), but this relies on the dubious

assumption that human viewers do not commit percep-

tion errors—an assumption our work does not support.

When counting walrus using IR thermography, Burn

et al. (2009) modeled detection probability as a function

of group size to help alleviate perception errors. Conduct-

ing auxiliary ground truthing by walking the flown tran-

sects and recording the coordinates of confirmed

individuals can quantify perception errors (Corcoran

et al., 2019). This strategy may be more effective for

sedentary species, as mobile species will likely flush or

move before being sampled by walkers. Double-observer

methods are well known in ecological studies (Nichols

et al., 2000), and enable the modeling of heterogeneity in

detection probability across predictors (Laake & Borchers,

2004). Moreover, open access software for fitting such

models is readily available for ecologists and managers

(Laake et al., 2022). Even so, to our knowledge, we are

Table 3. Density estimates (D̂) and detection probabilities (Pr(det)) of white-tailed deer (Odocoileus virginianus) from aerially captured infrared (IR)

and red-green-blue (RGB) video collected in Indiana, USA, from 8 February to 10 March 2021.

Ground Altitude Method Detection history D̂ SE(D̂) CV(D̂) Pr(Det) SE(Pr[Det])

Snow 300 MR Lenient IR 19.89 2.91 0.15 0.98 <0.01
Stringent IR 18.02 2.76 0.15 0.99 <0.01
Lenient RGB 16.68 3.02 0.18 0.99 <0.01
Stringent RGB 13.40 2.96 0.22 0.99 <0.01

PS Lenient IR 18.79 2.92 0.16 0.98 0.01

Stringent IR 17.32 2.72 0.16 0.98 0.01

Lenient RGB 16.15 2.98 0.18 0.98 0.01

Stringent RGB 12.93 2.89 0.22 0.98 0.01

450 MR Lenient IR 5.43 1.84 0.34 1.00 <0.01
Stringent IR 5.27 1.67 0.32 0.95 0.02

Lenient RGB 5.60 1.89 0.34 0.94 0.02

Stringent RGB 5.67 1.93 0.34 0.91 0.03

PS Lenient IR 5.43 1.84 0.34 1.00 <0.01
Stringent IR 4.64 1.41 0.30 0.88 0.04

Lenient RGB 4.69 1.46 0.31 0.84 0.04

Stringent RGB 4.59 1.44 0.31 0.81 0.05

Bare 450 MR Lenient IR 5.57 1.18 0.21 0.88 0.05

Stringent IR 3.97 0.90 0.23 1.00 <0.01
PS Lenient IR 4.70 0.98 0.21 0.84 0.07

Stringent IR 3.97 0.90 0.23 1.00 <0.01

Corresponding standard errors (SE(D̂)) and coefficients of variation (CV(D̂)) are reported for density estimates, and standard errors (SE(Pr[Det])) are

reported for Pr(Det). Video was captured at differing altitudes (300 and 450 m) and ground conditions (bare ground and snow cover). Densities

were estimated from two viewers using mark–recapture (MR) methods, or a single viewer using plot sampling (PS) methods. For PS, Pr(det) = the

probability of viewer 1 detecting a deer, and for MR, Pr(det) = the probability of either viewer detecting a deer. Densities were estimated using

four different types of detection histories: (1) detections from only IR video for which the heat signature had any potential to be a deer (Lenient

IR); (2) detections from only IR video in which the viewer was confident that the heat signature was from a deer (Stringent IR); (3) RGB confirma-

tions of any IR heat signatures in which the object in the RGB video had any potential to be a deer (Lenient RGB) and (4) RGB confirmations of

any IR heat signatures where viewers were confident that the object in the RGB video was a deer (Stringent RGB). When assigning IR heat signa-

tures or RGB objects, stringent detections were those with a shape that was clearly defined and unambiguous so that we believed no other object

than a deer could be producing such an IR heat signature or RGB object. No other species of similar shape and color to that of white-tailed deer

were present in our field site.
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the first to utilize this framework to estimate and correct

for perception errors in IR sampling. We encourage

future users of IR thermal sensors to employ double-

viewer methods when estimating population density from

video captured with aerial platforms that is manually

viewed.

Unlike perception errors, accounting for availability

errors is much more logistically challenging. Such error

could be induced by dense overhead cover or poor ther-

mal contrast (Havens & Sharp, 2015). Several past studies

have quantified availability errors by simultaneously con-

ducting additional studies to determine how many indi-

viduals are available for IR sampling. These have

consisted of ground surveys (Brunton et al., 2020; Kays

et al., 2019; McKellar et al., 2021; Witt et al., 2020) and

telemetric studies (Latham et al., 2021). Both of these

strategies are problematic for study species that are highly

mobile. Kissell and Tappe (2004) used human surrogates

to quantify availability errors; a potentially useful strategy

that nonetheless assumes: (1) IR heat signatures of the

surrogates are identical to the IR heat signatures from the

study animal; (2) habitat in which the surrogates are

placed is representative of the actual area to be sampled

and (3) conditions that affect IR heat signatures in the

surrogate study replicate those in the actual study. Dis-

tance sampling is an alternative method to address avail-

ability errors by accounting for decreased detection

probability associated with increasing distance from the

aerial transect line (Gentle et al., 2018; Schoenecker

et al., 2018). Among other things, distance sampling

assumes all objects directly on the line are detected with

certainty (Buckland et al., 2001). Mark–recapture distance

sampling can adjust density estimates when objects are

not detected with certainty on the transect line (Burt

et al., 2014). However, assessing availability errors with

mark–recapture methods is challenging for aerial sam-

pling because: (1) repeat flights typically occur immedi-

ately following initial flights and thus experience the same

thermal conditions which in turn causes the thermal sen-

sor to detect the same individuals and (2) when surveying

for mobile species, animal movement in between repeat

flights may confound how many individuals are within

the field-of-view of the thermal sensor. For these same

reasons, double-observer methods to correct for percep-

tion errors are problematic when using automated view-

ing algorithms to detect heat signatures. We encourage

future work on procedures to estimate availability errors,

especially with more mobile study species.

False positives from double counting the same individ-

uals present an additional source of error that can posi-

tively bias estimates. Generally, double counting occurs

from recording the same individual twice on overlapping

images or videos, and recording the same moving indi-

vidual twice on neighboring transects (Brack et al., 2018).

Fortunately, strategies to account for or avoid double

counting exist. Lu et al. (2022) developed a hierarchical

framework that utilized entity resolution to identify the

same individuals in overlapping images and thus avoid

Table 4. The AIC-best mark–recapture models fit to detection histories of white-tailed deer Odocoileus virginianus.

Ground Altitude Detection history Covariates AIC ΔAIC1

Snow 300 Lenient IR Distance + Observer −1644.62 1.88

Stringent IR Distance + Observer −1500.63 1.88

Lenient RGB Distance + Group size + Observer −1269.93 0.49

Stringent RGB Distance + Group size + Observer −1024.25 2.22

450 Lenient IR Observer −549.94 1.59

Stringent IR Observer −458.13 1.06

Lenient RGB Observer −440.42 1.94

Stringent RGB Observer −426.68 0.70

Bare 450 Lenient IR Group size + Observer −504.14 12.75

Stringent IR Group size + Observer −446.28 8.17

Detections were extracted from aerially captured infrared (IR) and red-green-blue (RGB) video collected in Indiana, USA, from 8 February to 10

March 2021. Video was captured at differing altitudes (300 and 450 m) and ground conditions (bare ground and snow cover). Mark–recapture
models were fit using four different types of detection histories: (1) detections from only IR video for which the heat signature had any potential

to be a deer (Lenient IR); (2) detections from only IR video in which the viewer was confident that the heat signature was from a deer (Stringent

IR); (3) RGB confirmations of any IR heat signatures in which the object in the RGB video had any potential to be a deer (Lenient RGB) and (4)

RGB confirmations of any IR heat signatures where viewers were confident that the object in the RGB video was a deer (Stringent RGB). When

assigning IR heat signatures or RGB objects, stringent detections were those with a shape that was clearly defined and unambiguous so that we

believed no other object than a deer could be producing such an IR heat signature or RGB object. No other species of similar shape and color to

that of white-tailed deer were present in our field site. Distance = the perpendicular distance in between the transect line and the deer. Obser-

ver = the observer that detected the deer. Group size = the number of deer in the same group as the detected deer.
1

Difference between the best model and next best model.
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double counting when IR images are analyzed instead of

video (e.g. Chrétien et al., 2015). Double counting the

same individuals on neighboring transects is not problem-

atic when animal movement is random and spatial sam-

pling effort is accounted for (Buckland et al., 2001).

Reactive movement is problematic if individuals consis-

tently run off the transect before the aircraft samples (due

to noise) or if the aircraft continually pushes individuals

and, thus, repeatedly samples the same individuals (Buck-

land et al., 2001). We did not document any reactive

movement of deer toward our aircraft at any altitude dur-

ing test flights and collection of data. While we recom-

mend surveying at low altitudes, we also encourage future

users of aerial platforms to be aware of reactive move-

ment induced by the aerial platform (Mulero-Pázmány

et al., 2017). Such reactive movement can bias density

estimates if not accounted for (Buckland et al., 2005;

Glennie et al., 2015, 2021). Perhaps, the easiest way to

avoid double counting on neighboring transects is to

space transects far enough apart to completely avoid this

error (e.g. Dunn et al., 2002). Regardless, we encourage

future researchers to conduct test flights to evaluate reac-

tive movement induced by the aerial vehicle.

In wildlife modeling, accounting for false positives has

received considerably less attention than false negatives

(Kéry & Royle, 2016, 2020; Strickfaden et al., 2020). Small

amounts of false positives can substantially bias estimates

(Miller et al., 2011). Because of this, modeling false-

positive rates has increased in areas such as genetics

(Augustine et al., 2020), acoustic monitoring (Chambert

et al., 2018) and citizen science (Clare et al., 2019). Many

of the strategies to count misidentification errors in IR

aerial sampling mimic those used for counting perception

errors. Several studies have counted misidentification

errors associated with automated viewing software by

manually examining the IR video (e.g. Chrétien

et al., 2016; Lethbridge et al., 2019; Lhoest et al., 2015),

but this strategy assumes that the manual examiner does

not commit misidentification errors. Simultaneous

ground surveys have been conducted to assess misidentifi-

cation errors (Bushaw et al., 2020; Corcoran et al., 2019;

Stander et al., 2021). Such ground surveys appear more

promising if the target species is sedentary and can thus

reasonably be assumed to not move in between flights

and ground truthing. Geographic coordinates of all other

objects or animals can then be compared to those of the

target individuals, and used to count misidentification

errors (Corcoran et al., 2019). Other researchers have

reduced the altitude of an uncrewed aircraft (Bushaw

et al., 2019; Smith et al., 2020), or circled a crewed air-

craft (Gillette et al., 2015), to confirm IR heat signatures

as the target species. Circling or altitude-reduction strate-

gies may not be feasible for large-scale spatial sampling of

common species, as time expenditures would drastically

increase. Our results suggest that the use of RGB video to

confirm IR heat signatures as belonging to the target spe-

cies is a promising method for reducing misidentification

errors when possible. Unfortunately, our review found

that supplemental RGB video has inconsistently been

implemented by those relying on IR thermal sensors to

sample wildlife, especially in crewed vehicles. We found

strong evidence for the need to use RGB video to confirm

that IR heat signatures are deer—19.3% (SE = 4.1) of leni-

ent IR detections that would otherwise have been ignored

were confirmed as deer, and 18.3% (SE = 2.8) of stringent

IR detections that would otherwise have been counted

were instead confirmed as not deer or unsure. Similar to

previous research, we found the efficacy of RGB confir-

mation to be higher at lower altitudes (Millette

et al., 2011). Additionally, we found snow to be essential

when using RGB video to confirm IR heat signatures, as

white-tailed deer blend in well with bare or leaf-covered

ground in forested habitat. Thus, our ability to distin-

guish deer from debris or ground features was poor, at

least at 450 m altitude. Therefore, to minimize misidenti-

fication errors, we recommend using RGB video to con-

firm IR heat signatures and sampling during snow cover

from flights at lower altitudes. Reliance on snow and low

altitude for RGB confirmations may be less important for

those sampling in open habitats, when the target species

has natural color contrast with the background terrain,

and for endotherms with larger body masses than white-

tailed deer. In instances when snow cover is unavailable,

uncrewed aircraft may be a suitable alternative to crewed

aircraft, as these platforms can be flown at much lower

altitudes than crewed aircraft and thus may not need to

rely on snow or a double-sensor platform. Nonetheless,

we encourage future work to quantify and account for

misidentification errors in aerial sampling.
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Table S1. AIC-based model selection results for fit detec-

tion functions. The top four AIC-best detections func-

tions are shown for each altitude (m), observer and type

of infrared detections used (lenient = Len, strin-

gent = Strin).

Table S2. The number of articles using infrared thermal

sensors from aerial platforms that addressed different

error types. Error types considered were detection proba-

bility across the field-of-view of the sensor (Uniform),

availability errors (AE), perception errors (PE), misclassi-

fication errors (ME) and double counting errors (Dou-

ble).

Figure S1. Plots of the AIC-best detection function for

each altitude (m), observer and type of infrared detec-

tions used (lenient = Len, stringent = Strin).

Figure S2. The number of articles published annually

using aerial sampling techniques combined with infrared

thermography to monitor wildlife.
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