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ABSTRACT Ecology and management programs designed to track population trends over time increas-
ingly are using passive monitoring methods to estimate terrestrial mammal densities. Researchers use
motion‐sensing cameras in mammal studies because they are cost‐effective and advances in statistical
methods incorporate motion‐sensing camera data to estimate mammal densities. Density estimation in-
volving unmarked individuals, however, remains challenging and empirical tests of statistical models are
relatively rare. We tested the random encounter and staying time model (REST), a new means of esti-
mating the density of an unmarked population, using human volunteers and simulated camera surveys. The
REST method produced unbiased estimates of density, regardless of changes in human abundance,
movement rates, home range sizes, or simulated camera effort. These advances in statistical methods when
applied to motion‐sensing camera data provide innovative avenues of large‐mammal monitoring that have
the potential to be applied to a broad spectrum of conservation and management studies, provided
assumptions for the REST method are rigorously tested and met. © 2020 The Wildlife Society.
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Abundance and density are fundamental ecological param-
eters that are difficult to measure because individuals move
in and out of sample plots, and not all individuals present at
sample units are detected (Royle and Nichols 2003).
Heterogeneity in individual movement and presence at
sample units necessitates estimating and correcting for the
probability of detection. Count data from repeated surveys
of sampling units fundamentally inform abundance esti-
mates corrected for detection. Capture‐mark‐recapture
(CMR) uses the marked individual as the sample unit
with the pattern of captures over time assisting with
abundance estimates (Seber 1982). In these cases, the
model allows heterogeneity of capture probability among
individuals (Pollock 1982).
Ambiguity in the area over which researchers estimate

abundance can make translating abundance into density
(i.e., number/unit area) less than straightforward. Individuals
living on the boundary of the study area substantially affect
density estimates (Efford 2004). Spatially explicit capture
recapture (SECR) models use the spatial pattern in the re-
captures of individuals to estimate probable locations of home
range centers within a study area to address this issue
(Efford 2004, Royle et al. 2013).

Chandler and Royle (2013) built on the SECR model to
consider sampling site locations and their associated count
statistics to estimate density without the need for marking
individuals. This model infers the number and locations of
home range centers from the spatial autocorrelation of the
count data. Surveyors must space sampling sites so an in-
dividual can encounter multiple traps, in contrast with the
assumption of site independence assumed with previous
models.
Researchers now commonly use motion‐sensitive cameras

to estimate habitat use, distribution, abundance, and density
for unmarked wildlife populations (Burton et al. 2015).
Minimal human intervention, reduced cost, and simplified
logistics make camera surveys attractive for high profile
species of conservation concern or in conditions that prevent
direct observation or capture of individuals. Photos that
identify individuals are useful in standard CMR methods,
but photos of species that do not allow for individual
identification can also be used to calculate abundance esti-
mates using SECR models (Royle and Nichols 2003,
Royle 2004) and density (Chandler and Royle 2013,
Ramsey et al. 2015).
By assuming individuals encounter point detectors ran-

domly, Rowcliffe et al. (2008) developed the random en-
counter model (REM). The REM uses independent
estimates of travel speed (obtained through observation),
time active each day, group size, and the area of the
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detection zone of each camera to relate photos/time to
density (Rowcliffe et al. 2008). The model assumes that
samples from each camera are independent and uses count
data (photos/unit time) for estimations but bases estimation
on individual movement rather than inferred spatial point
process. The model depends on accurately estimating
movement speed, time active, and group size, necessitating
considerable additional effort that may not be possible for
many species. Rowcliffe et al. (2016) present suggestions on
feasible approaches.
Nakashima et al. (2018) modified Rowcliffe's original

method to measure the staying time of an individual within
the detection area of remote cameras. They referred to this
model as the random encounter and staying time (REST)
method. The REST model assumes that researchers place
cameras randomly relative to individual movement within
the study area. With this assumption, the residence time of
an individual at any given detector is a function of the du-
ration of time the detector is deployed and the proportion of
the study area it samples. Under the assumption of random
movement, residence time scales linearly with the number of
individuals, thereby allowing an estimate of density without
the need to estimate rate of movement, home range size, or
individual identity. The model also does not require closure
of the study area in the sense that individuals do not leave or
enter the area, but only that immigration, emigration,
births, and mortality are balanced during the study period.
The REST model calculates population density as a

function of the residency time the target species spends in
front of a camera. The equation, modified from Nakashima
et al. (2018) to account for potentially different sampling
durations and areas between cameras, is:
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where ρ̂ is the estimated density, n is the number of cam-
eras, ti is the staying time of an individual at the ith camera,
Ti is the time the ith camera was active, and ai is the area
sampled by the ith camera (its 100% detection zone; s in
Nakashima et al. 2018).
If a camera records multiple individuals at the same time,

the model estimates residency time independently for each
individual. Importantly, calculating the cumulative resi-
dence time (t in the above equation) does not require
identifying distinct residency bouts, eliminating the need to
define a camera detection; one can simply sum the time
individuals spend in front of each camera. This method is
applicable to territorial and non‐territorial species, provided
researchers distribute cameras randomly in relation to an-
imal space‐use patterns (i.e., no baiting or placing cameras
only in areas with preferred habitat characteristics).
The REST model assumes that cameras sample habitat

proportional to their availability. The precision and accu-
racy of estimates to movement within the territory or home
range relies on the assumption of equal probability of a
home range existing within the study area (i.e., homoge-
neity of the point‐pattern describing the distribution of

home ranges). Additionally, detectability within the
detection zone of the cameras must be perfect (p= 1). This
method also assumes the detection device does not modify
individual movement.
Nakashima et al. (2018) tested the REST model using

computer simulations and field surveys of duiker pop-
ulations (red forest duiker [Cephalophus natalensis] and blue
duiker [Philantomba monticola]) in Moukalaba‐Doudou
National Park, Gabon. The REST model provided un-
biased estimates of abundance for nearly all simulated
populations representing paired and solitary movement,
continuous movement, and movement with resting. The
REST estimates from camera surveys of actual duiker
populations were similar to estimates made via line transect
surveys. Nakashima et al. (2018) provided strong evidence
for the robustness of the REST method in computer sim-
ulations, but they did not know the true densities of the
duiker populations they tested.
We sought to test the REST method using known den-

sities of human volunteers, which provided us with proof of
concept. Human volunteers were advantageous because they
allowed for more realistic movement paths than computer
simulations. Our objective was to determine if movement
rate, home range size, and density affected bias and pre-
cision of the estimates produced by REST. We equipped
human volunteers with global positioning system (GPS)
devices and gave them precise movement rules such that
home range size and movement rate were varied.

STUDY AREA

Our test took place at the Louise McKinney Riverfront
Park in Edmonton, Alberta, Canada (53°N 113°W) on 16
and 23 September 2017. The entire park is approximately
4.0 ha in size and the weather on both days was clear and
sunny (~15°C). The study area was approximately 1.5 ha in
size, and consisted of flat, open, grassy areas, walking paths,
and a pavilion, all of which were accessible to the volunteers.

METHODS

The Research Ethics Office at the University of Alberta
granted approval for using human volunteers in our test
(application number pro00075181). We employed 12 vol-
unteers as proxies for non‐territorial, unmarked terrestrial
mammals. We assigned volunteers to use first the entire
park and then half the park as their home range. We des-
ignated home range boundaries with flags. We gave each
volunteer either a GPSMap64 or a GPSMap78 unit
(Garmin, Olathe, KS, USA), both of which are accurate
within 5–10m to track their movements every second for
the duration of each scenario.
We conducted 6 scenarios, each scenario being a different

combination of movement rates and home range sizes. Each
scenario lasted 16 minutes and included 3 movement pat-
terns ( jogging for 10 minutes and resting for 6 minutes,
walking for 10 minutes and resting for 6 minutes, and
walking for 16 minutes continuously) performed within
2 home range sizes (0.75 ha and 1.50 ha). We instructed
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volunteers to move independently of each other during each
test, but we synchronized their movement and rest periods.
We tracked the duration of each scenario using a stop-

watch and used a whistle to signal when subjects were to
change movement rates and end each scenario. Because of
variation among volunteers in the time they took to start,
stop, and save their individual tracks, each scenario varied
slightly from 960 seconds (16 min; Table 1). We merged
tracks collected over both days according to scenario in
ArcMap version 10.5.1 (Esri, Redlands, CA, USA) and
clipped each track to the shortest duration of any given
volunteer within scenarios to standardize the number of
points per person per scenario (932± 19 [SD] seconds). We
created polygons consisting of 800 cells around each sce-
nario based on the coordinates of the outermost tracks
(Fig. 1). Each cell was approximately 20 m2. We summed
the number of points per cell for each scenario as a proxy of
time spent in each cell. If a point fell on the border of
2 adjacent cells, we randomly assigned it to 1 cell.
We assumed the habitat characteristics in the study area

were homogenous during this study, and detectability was
perfect given that GPS units tracked each volunteer and
never failed during the simulations. Volunteers were not
attracted to detection devices because we did not actually
deploy any cameras.
We varied human densities to include 2, 6, and 12 people.

We varied sampling effort by varying the number of cells
selected randomly as camera deployments. We selected 8,
20, 50, or 100 cells as camera deployment sites, resulting in

1%, 2.5%, 6.25%, and 12.5% coverage of the study area,
respectively. We used 1,000 bootstrap samples with re-
placement of camera effort in each scenario of movement
speed, human densities, and home range area for 72 dif-
ferent scenarios in R (R version 3.5.1, www.r‐project.org,
accessed 10 Oct 2018). We estimated the density of human
volunteers across each combination of movement speed,
true human density, and home range area using equation 1.
We then multiplied the resulting density by the area to
calculate abundance for comparison to the number of vol-
unteers per scenario. We calculated means and confidence
intervals across bootstrapped samples to estimate abundance
and quantify precision (data and R code available online in
Supporting Information).

RESULTS

The REST model provided accurate estimates of human
density regardless of movement rate, home range area,
camera effort, or number of volunteers (Fig. 2). Precision
decreased when our sampling effort was low (i.e., 1%
coverage). Neither movement rate nor home range size
affected estimator accuracy, although the REST model
consistently estimated abundance with lower precision under
walking‐and‐resting and jogging‐and‐resting scenarios com-
pared to scenarios representing homogenous walking speeds.
In scenarios representing human densities of 2 people,

we observed the least amount of error across all movement
or home range size. In scenarios with 20 and 50 cameras,

Table 1. Movement rates of the human volunteers and home range sizes (ha) available in each scenario on 16 and 23 September 2017 at the Louise
McKinney Riverfront Park, Edmonton, Alberta, Canada, where the cell area (m2) refers to the approximate cell size per scenario. We recorded the duration
of each scenario in seconds (s), and included the number of points tracked per second (point freq).

Scenario Home range (ha) Movement rate Duration (s) Point freq (s) Cell area (m2) Total area (m2)

1 0.75 Jog 5min, rest 3min (2×) 11,424 952 20 16,000
2 0.75 Walk 5min, rest 3min (2×) 11,184 932 19 15,200
3 0.75 Walk continuously (16min) 11,268 939 20 16,000
4 1.50 Jog 5min, rest 3min (2×) 11,208 934 20 16,000
5 1.50 Walk 5min, rest 3min (2×) 10,752 896 20 16,000
6 1.50 Walk continuously (16min) 11,244 937 20 16,000

Figure 1. Merged tracks of 12 human volunteers in the 800‐cell polygon from scenario 5. In scenario 5, the entire Louise McKinney Riverfront Park,
Edmonton, Alberta, Canada, was available to everyone on 16 and 23 September 2017, and the movement rate was walking for 10minutes and resting
(no movement) for 6minutes.
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as human abundance in the park increased, precision
decreased.
Across all home range sizes and movement rates, the

REST method accurately estimated human densities. We
found no effect of home range size on estimator accuracy or
precision. Estimators provided the greatest precision under
continuous‐walking scenarios across all levels of camera

effort, human density, and home range size. The in-
troduction of heterogeneity in movement rate did not affect
estimator accuracy but did reduce precision.
Not surprisingly, estimator precision increased with

camera effort. With 100 camera cells, confidence intervals
were, on average, an order of magnitude smaller than in
scenarios with 8 camera cells (Fig. 2).

Figure 2. Bootstrapped mean estimates and 95% confidence intervals of human densities including 2, 6, and 12 people with motion‐sensitive camera effort
of 8, 20, 50, and 100 cameras across all 6 scenarios of movement rate and home range size in the Louise McKinney Riverfront Park, Edmonton, Alberta,
Canada on 16 and 23 September 2017. Small (purple) and large (orange) in the legend refer to the home range size available to the volunteers, either 0.75 ha
or 1.5 ha, respectively. JogRest, Walk, and WalkRest refer to the movement rates in each scenario and are differentiated by triangles, circles, and squares,
respectively.
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DISCUSSION

The REST method accurately estimated human densities
regardless of movement rate, home range size, and camera
coverage in these scenarios. Increased density resulted in
decreased precision because of the increased variability of
staying times across cameras. Although movement rate and
home range size did not affect estimator error, estimators
were least precise in scenarios involving resting. Increased
precision when volunteers were moving at slower paces
continuously as opposed to moving and resting supports the
theory that homogenous movements rates result in more
precise estimates. Nakashima et al. (2018) noted that the
REST method may be less precise for species that have long
periods of inactivity because cameras rarely capture the
target animal resting. Our human scenarios partially ac-
counted for this potential bias by incorporating resting, in
which volunteers did not move from their locations for
approximately 38% of the survey period during 2 of the
scenarios. Despite this lack of movement, the REST
method was still able to estimate density in those scenarios;
however, the estimates were less precise than other move-
ment rates. Further testing of the effects of species with long
periods of inactivity may be warranted. We deviated from
Nakashima et al. (2018) by using boot‐strapping rather than
likelihood‐based quantification of uncertainty. As such, we
demonstrate the potential for unbiased estimation of staying
time even where it does not necessarily follow a parametric
distribution.
Nakashima et al. (2018) also suggested that cameras have

sensitive sensor settings, no delay period between photos, or
alternatively, take video recordings, and that the effective
detection area be tested in situ according to methods pro-
posed by Rowcliffe et al. (2011). We excluded potential
effects of delayed camera capture rates and imperfect de-
tectability by having each volunteer tracked every second.
Camera capture rates and imperfect detectability, however,
could present challenges in field settings when researchers
use real cameras.
Environmental variation or attributes of the study species

may influence detectability. Dense vegetation and inclement
weather can decrease the effective detection areas of cameras,
leading to overestimation of population density. Surveyors
commonly clear vegetation blocking the camera view or
deploy cameras in relatively open sites (Rowcliffe et al. 2011,
Rovero et al. 2013, Villette et al. 2016). Additionally, re-
searchers must account for the variation in the detection area
of cameras between daytime and nighttime, with nighttime
detection areas being more limited. Regardless of where
cameras are placed, researchers need to measure the effective
detection area of each camera in the field to accurately
measure population densities (Nakashima et al. 2018).
Smaller species may be less detectable, resulting in lower

capture rates and potentially causing underestimation, de-
spite being present in the detection area (Tobler et al. 2008,
Anile and Devillard 2016, Nakashima et al. 2018).
Evaluation of the REST model across multiple species
would complement our study for targeting its application.

MANAGEMENT IMPLICATIONS

Obtaining unbiased density estimates of unmarked terres-
trial mammal populations continues to be a problem in
wildlife management. Our evaluation of the REST method
using human volunteers indicates the robustness of the
method to variation in movement rate, home range size, and
number of individuals estimated. Based on the results of the
park scenarios, we suggest that future tests or applications of
the REST method have >1% coverage of the study area to
increase the precision of estimates. This method offers a
cost‐effective, unbiased means to estimate animal densities
from motion‐sensitive camera data without the use of
marked individuals or estimates of home range sizes. The
application of the REST method to motion‐sensing camera
studies may have the potential to improve monitoring
efforts for several species, provided assumptions are met.
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