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WildCAM (Wildlife Cameras for Adaptive Management) is a Western Canadian network 

of camera trappers. The goal of the program is to support effective wildlife management 

by encouraging coordination in camera trap surveys and data synthesis. It is a 

grassroots network driven by the needs and desires of its users, with an eye toward 

tackling large-scale challenges and questions too difficult for individual projects to 

address. WildCAM is a community of practice that creates and shares knowledge within 

the scope of the network. 

WildCAM is co-chaired by Dr. Cole Burton, Wildlife Coexistence Lab, University of 

British Columbia, and Dr. Jason Fisher, Applied Conservation Macro Ecology Lab, 

University of Victoria. It is administered by the BC Parks Foundation in conjunction with 

the Wildlife Coexistence Lab, and supported by the Government of British Columbia 

through the Together for Wildlife program and by the Canada Research Chairs 

program. 

To find out more, visit our website: www.wildcams.ca. 

To become a member and/or add your camera trap project to the WildCAM database, 

visit: https://wildcams.ca/join/?register=1. 

To find out more about the BC Parks Foundation, visit: https://bcparksfoundation.ca/. 

  

https://wildlife.forestry.ubc.ca/
http://www.wildcams.ca/
https://wildcams.ca/join/?register=1
https://bcparksfoundation.ca/
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1. Introduction 

1.1 Density Estimation for Wildlife Conservation and Management 

Accurate estimates of wildlife population metrics are critical for successful management 

(Rich et al. 2014). Measures of a population’s size, composition, and distribution – and 

how they change over time – help guide conservation actions (Rönnegård et al. 2008), 

such as protecting threatened species (Mace et al. 2008), implementing recreation 

closures (Simpson and Terry 2000, https://www2.gov.bc.ca/gov/content/sports-

culture/recreation/motor-vehicle-prohibitions/snowmobiling-in-bc/snowmobile-closures), 

and setting hunter harvest limits (Government of BC 2020). Such information can also 

be used to forecast population trends into the future, as wildlife face the compounding 

pressures of climate and landscape change (Stewart 2022). 

Estimates of population density are of particular importance for conservation and 

management (Williams et al. 2002). Density is a measure of abundance (i.e., number of 

individuals) per unit area (e.g., animals/km2; Becker et al. 2022, Green et al. 2020). It is 

often considered the “gold standard” of population metrics, as standardization across a 

unit of area allows unbiased comparison across study sites, periods, and species 

(Green et al. 2020, Morin et al. 2022, Sollmann 2018). For density estimates to be of 

ecological relevance and of conservation use, however, they must be accurate and 

precise, and produced at regular intervals (Burgar et al. 2018, Jiménez et al. 2017). 

Robust estimates of density are crucial not only to the management of wildlife, but also 

to building public trust and support – especially for controversial management decisions 

(e.g., culling or recreation closures; Jiménez et al. 2017). 

1.2 Provincial Standards for Density Estimation 

1.2.1 Summary of Provincial Standards 

The province of British Columbia (BC), Canada, has standard protocols for measuring 

medium- and large-bodied mammal population densities. They are described in the 

https://www2.gov.bc.ca/gov/content/sports-culture/recreation/motor-vehicle-prohibitions/snowmobiling-in-bc/snowmobile-closures
https://www2.gov.bc.ca/gov/content/sports-culture/recreation/motor-vehicle-prohibitions/snowmobiling-in-bc/snowmobile-closures
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following documents – BC Ministry of Environment, Lands and Parks (1998a-c), BC 

Ministry of Sustainable Resource Management (2002) – and are summarized below. 

Note the difference between a survey tool and a research method: a survey tool is a 

means of gathering information for statistical analysis; a research method is a means of 

analyzing data to produce a measurement or estimate. 

Table 1. Summary table of BC’s standard protocols for measuring population densities of medium and large mammals. 
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1.2.2 Towards New Provincial Standards 

BC’s provincial standards for inventorying medium- and large-bodied mammals have 

not been extensively updated since the late 1990s or early 2000s. This field has seen 

several important technological, methodological, and statistical advances in the past 

twenty-plus years. Wildlife managers adhering to outdated standards may not be aware 

of the many new research tools and statistical models now at their disposal. 

Camera traps are one such tool. Over the past thirty years, camera traps (also called 

trail or remote wildlife cameras) have exploded in popularity (Burton et al. 2015, Deslisle 

et al. 2021). They are a minimally invasive, cost-effective method of monitoring 

mammals in all kinds of habitats and conditions, and over long periods of time (Kucera 

and Barrett 2011). Compared with other techniques, camera traps can be used to study 

a wider variety of landscapes and species (Palencia et al. 2021), including rare and 

elusive animals which are typically very difficult to research (e.g., Blanc et al. 2013). 

Camera traps can also be used to study community composition (e.g., Hedwig et al. 

2018) and interactions (e.g., Smith et al. 2020), and to make inferences about vital rates 

(recruitment and survival; e.g., Hessami 2019), habitat selection (e.g., Dertien et al. 

2017), prevalence of disease (e.g., Murray et al. 2021), body condition (e.g., Sashika et 

al. 2020), and animal behaviour (e.g., Windell et al. 2019). 

Camera traps are being used as a research tool in BC. At least 61 projects are active or 

complete (https://wildcams.ca/project-database/, Clarke unpublished). Compared to 

Alberta, the Northwest Territories and neighbouring states, however – which all have 

large-scale, standardized camera trapping programs – wildlife managers in BC have yet 

to adopt a standardized protocol for camera trap data collection, and very few make use 

of cameras for density estimation. 

1.3 Purpose of Review 

This document is an overview of the literature on camera trap density estimation. Its 

purpose is four-fold: 1) to summarize how camera trap density models work; 2) to make 

clear the advantages, limitations, assumptions and uncertainties of each model; 3) to 

https://wildcams.ca/project-database/
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provide examples of how each model has performed in simulated and field tests, in 

comparison to other camera trap density models and to “traditional” density estimation 

methods; and 4) to provide wildlife managers in BC with tools to select the camera trap 

model that best suits their study species, landscapes and needs. Our overarching goal 

is to supply wildlife managers and practitioners in BC (and beyond) with the information 

they need to decide whether camera traps are the right density estimation tool for their 

purposes, and, if so, which camera-based density models are most appropriate for their 

study system. Note that model explanations are primarily conceptual; for the underlying 

mathematics, readers should refer to the references cited. Note also that camera trap 

density research and model development is ongoing – it is our intention to update this 

document as the field evolves, and as models are further researched and developed. 

This document is not a judgement on the value of camera traps as a research tool; the 

utility of cameras is well-established and well-described (see above for examples). 

Rather, this document is an overview and evaluation of how to use camera trap 

detection data for density estimation.   
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2. Overview of Density Models: What is Possible? 

Here, we describe density models that can be applied to camera trap data. Some of 

these models (e.g., distance sampling) were initially designed for other data collection 

methods (e.g., ground-based surveys) and modified for use with camera trap data. 

Others (e.g., time in front of the camera) were designed specifically for camera trap 

research. 

Camera trap data based density models fall into three categories: marked, unmarked, 

and partially-marked population models. Marked population models rely on individual 

identification using natural or artificial marks (e.g., coat patterns, scars, tags, collars; 

Figure 1) to resolve the number of animals in a population. Unmarked population 

models rely on supplementary data (e.g., animal movement speed) and/or assumptions 

as a surrogate for individual identification – that is, to distinguish multiple detections of 

the same individual from detections of multiple individuals at a camera station, when 

individuals do not carry unique features (Morin et al. 2022, Gilbert et al. 2021; Figure 2). 

Partially marked population models can be applied either to populations in which a 

proportion of all individuals carry marks, or to populations in which individuals 

themselves are partially marked (i.e., have a suite of partially identifying traits). 

Figure 1. Examples of naturally (A) and artificially (B) marked animals. A) This jaguar’s unique pattern of spots can be used 

to distinguish it from other individuals in its population. © Chris Beirne, Wildlife Coexistence Lab and Osa Conservation. B) 

This mountain goat was collared and marked prior to camera trapping. Its numbered tag clearly identifies which individual it 

is. © Mitchell Fennell, Wildlife Coexistence Lab. 
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Figure 2. Part of the challenge of unmarked density estimation is distinguishing between many detections of a single individual 

(top) and detections of many different individuals (bottom) at a given camera station. Top panel: the same black deer passes in 

front of the camera at three different points in time. Bottom panel: three different deer – grey, brown and orange – pass in front 

of the camera at each timestamp. Unmarked models do not differentiate between the top and bottom scenarios directly (i.e., by 

individually identifying the deer), but use secondary information or model assumptions to tease them apart. 
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2.1 Marked Populations 

2.1.1 Capture-Recapture (or Capture-Mark-Recapture or Mark-Recapture) 

Of all the modelling frameworks discussed in this document, capture-recapture (CR) – 

also called capture-mark-recapture or mark-recapture – is perhaps the most well-

known. Since the 19th century, CR has been used to measure population size by 

capturing, marking, releasing and recapturing individuals (Le Cren 1965, Otis et al. 

1978). For species or populations that are challenging to physically trap and mark, CR 

can also be applied to DNA, acoustic and camera trap data (Royle et al. 2014). Here, 

we will discuss camera trap CR. 

To estimate density using camera 

trap CR, we must first estimate 

population size 𝑁. CR models use 

individuals’ detection histories – 

that is, the record of when each 

individual was photographed or 

not photographed (i.e., 

(re)captured or not (re)captured) – 

to solve for 𝑁 (Figure 3; Royle 

2020). Population-level detection 

histories look like a matrix of 1s 

and 0s, where 1s signify that an 

individual was captured during a 

given sampling occasion 𝑘, and 0s 

signify that the individual was not 

captured during that occasion 

(Royle 2020, Royle et al. 2014). The number of individuals photographed at least once 

over the course of the study (i.e., the count of animals captured) is 𝑛.  

Figure 3. Adapted from Royle (2020). A detection history matrix for an 

example population. For each individual (1 through 𝑛) during each 

sampling occasion (1 through 𝐾), a value of 1 is assigned if that 

individual was detected at a camera trap and a value of 0 is assigned 

if it was not detected at a camera trap. Note that we do not detect 

individuals 𝑛 + 1, 𝑛 + 2…𝑁 (0s for every sampling occasion), but they 

are still present and able to be detected. 
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Importantly, the count of animals is not the same as the size of the population (i.e., 𝑛 ≠

𝑁). Some individuals will never be photographed during a study, even though they are 

present and able to be detected (i.e., they are in 𝑁 but not in 𝑛; Royle 2020). Using the 

matrix of detection histories, we must therefore calculate the likelihood animals will be 

detected by an array of camera traps – that is, detection probability p (Royle 2020). 

Taking this information together, we can calculate population size 𝑁 as: 

𝑁 =
𝑛

𝑝
 

which is often referred to as the canonical estimator of population size (Royle 2020). 

Population size 𝑁 can then be divided by an estimate of the area of the sampling frame 

𝐴 to obtain density. 

CR models have important limitations – notably that they do not consider the spatial 

configuration of camera traps or the spatial pattern of animal detections. This gives rise 

to two major issues: 

1) The sampling frame 𝐴 is not known (Chandler and Royle 2013). In other words: 

the true area animals occupy is never measured, only approximated using ad-

hoc approaches (e.g., using a buffer strip around the trap array; Rich et al. 2014, 

Sollmann 2018). Consequently, density cannot be calculated explicitly (Chandler 

and Royle 2013), and CR-derived density estimates are somewhat arbitrary and 

difficult to compare across studies (Green et al. 2020, Royle et al. 2014, 

Sollmann 2018). 

2) Detection probability is assumed to be the same across all individuals and 

sampling occasions, even though the likelihood a given individual is detected at a 

given camera trap will change with its proximity to that trap. An animal that 

occupies territory far away from a trap is less likely to be detected there than one 

that lives nearby, for example (Morin et al. 2022). 
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The standard CR model has largely been phased out with the advent of spatially-explicit 

CR models (see 2.1.2 Spatial Capture-Recapture; Burton et al. 2015, Sollmann 2008), 

which address the shortcomings of CR and have been shown to produce more accurate 

density estimates (e.g., Blanc et al. 2013, Obbard et al. 2010, Sollmann et al. 2011).   
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2.1.2 Spatial Capture-Recapture (or Spatially Explicit Capture-Recapture) 

 

How the Model Works 

Spatial capture-recapture (SCR) models can be applied to any survey method where 

animals are individually identifiable and trap locations are known: live trapping and 

tagging, DNA sampling, camera trapping, etc. (Royle et al. 2014). Here, we will discuss 

camera trap SCR. 

SCR models break populations down into the activity, or home range, centres of 

individual animals. Let us first imagine we know the number and location of all 

individuals’ activity centres in a population. If we did, we could easily estimate density: 

𝐷 =
number of activity centres

area encompassing all activity centres
 

assuming each member of the population has an activity centre, and so the number of 

activity centres is equivalent to population size; and since the area encompassing all 

activity centres is the total area sampled by the camera array (i.e., the sampling frame; 

Sollmann 2018). In reality, we do not know the number and location of activity centres – 

indeed, the estimated number and location of activity centres is the SCR model output. 

To resolve the number and location of activity centres – and thus estimate density – 

SCR models combine information about 1) where animals are detected in space (using 

an observation model) and 2) how animals are distributed in space (using a spatial 

process model; Figure 4; Royle 2016). 
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The observation model uses the 

record of where each individual was 

detected (i.e., individuals’ detection 

histories) to infer the location of each 

individual’s respective activity centre 

(Figure 5A; Chandler and Royle 

2013, Royle 2016). It relies on the 

inverse relationship between 

detection probability and camera-

trap-to-activity-centre distance: as 

the distance between a camera and 

an individual’s activity centre 

increases, the likelihood that 

individual will be detected there decreases (Figure 5B; Royle et al. 2014). So, animals 

will be detected most frequently at camera traps near their activity centres, and least 

frequently (or not at all) at camera traps far from their activity centres. Because the 

locations of activity centres are unknown, we use a spatial process model to 

approximate their distribution. Point-process models are a common choice (Royle 

2016). A point-process model is a random pattern of points in space (Baddeley, no 

date); it can be homogenous (completely spatially random) or inhomogeneous (the 

density of points depends on landscape/habitat covariates; Royle 2016). 

Taken together: SCR essentially “downscales” density – a population-level estimator – 

to the level of the individual. The model asks: where does each animal live (Royle 

2016)? Although the location of animals’ activity centres is not known, we can use 

information about where individuals are captured (detection histories) and how activity 

centres are distributed in space (point-process model) to infer where they live, and thus 

estimate density (Royle 2016). SCR can be implemented using many statistical 

frameworks, including full likelihood estimation (Borchers and Efford 2008), data-

augmented maximum likelihood estimation (Royle et al. 2014), and data-augmented 

Bayesian estimation (Royle and Young 2008; Morin et al. 2022).  

Figure 4. SCR models are made up of two sub-models: an 

observation model, which describes where individual animals are 

detected (i.e., their detection histories); and a spatial process model, 

which describes how animals’ activity centres are distributed. 
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When deploying cameras for SCR analysis, practitioners must balance the area 

covered by the camera array with trap spacing to maximize both the number of unique 

individuals captured and the number of spatial recaptures of each individual. A larger 

sampling area will yield a higher count of unique individuals; closely-spaced traps will 

yield a higher number of spatial recaptures (i.e., detections of the same individual at 

different camera traps; Royle et al. 2014). Both are important for SCR density 

estimation. Cameras should also be deployed across habitat types with different levels 

of use (Morin et al. 2022, Sun et al. 2014). Grid and clustered sampling designs can 

help meet all these needs (Clark 2019, Sun et al. 2014). Note that optimal camera trap 

placement and spacing will change with focal species, landscape and project limitations. 

See Clark (2019), Dupont et al. (2021), Fleming et al. (2021), McFarlane et al. (2020), 

Nawaz et al. (2021), Romairone et al. 2018, Sollmann et al. (2012) and Sun et al. 

(2014) for more detailed explorations of SCR study design. 

Figure 5. Adapted from Morin et al. (2022) and Royle et al. (2014). A) A diagram of how the individual activity centres (circles) that 

make up a population might overlap with a camera array (grey crosses). The red circle highlights an example individual’s activity 

centre. The red arrows point towards camera stations where the red individual was detected; the numbers beside the camera 

stations show how many times the red individual was detected at each station. Note, the number and location of individual’s 

activity centres is not known, but rather inferred from the spatial pattern of detections (i.e., the number of detections of each 

individual at camera stations of known location). B) An example graph showing how the probability the red individual is detected at 

a camera station decreases with distance from its activity centre. This is reflected in A); as the distance between the red 

individual’s activity centre and a camera station increases, the number of detections dwindles. σ is the spatial scale parameter; it 

describes how detection probability decreases with increasing distance. 
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Another aspect of sampling design practitioners must consider is the number and 

configuration of cameras deployed at a station to identify animals to the individual. Left 

and right flanks may need to be photographed simultaneously, for example, to avoid 

assigning different identities to each side (Augustine et al. 2018); as another example, 

chest markings may need to be photographed from multiple angles at bait stations to be 

able to resolve identity (Proctor et al. 2022). 

Assumptions 

The assumptions listed below apply to basic SCR models. Note that many model 

extensions have been developed to account for violations of these assumptions, 

although they may require more statistical knowledge and computational power. 

1) Population closure. Closed SCR models assume that there are no births, deaths, 

immigrations or emigrations over the course of the study. Changes in population 

size, whether through entries or exits, can result in the misestimation of detection 

probability or sampling area, and thus the misestimation of density (Green et al. 

2020). To minimize violations of assumption 1, practitioners may choose to keep 

study length short or implement an open population SCR model (e.g., Gardner et 

al. 2010a, Shaub and Royle 2014). Note that open population models are 

designed for estimating population abundance an/or demographic parameters in 

populations that are not closed (e.g., Gardner et al. 2018). 

2) Detections are independent. Detecting individual A at a camera station does not 

affect whether individual B will be detected at that camera station. Likewise, 

detecting an individual at camera station 1 does not affect the probability that 

individual will be detected at any other camera station (Green et al. 2020). This 

assumption is violated when animals travel in groups or prefer/avoid certain parts 

of the study area (Green et al. 2020). SCR appears to be fairly robust to group-

travelling behaviour (Sun et al. 2022), but perhaps only at moderate levels 

(Bischof et al. 2020). Model extensions have been developed to account for 

violations of this assumption (see Gardner et al., 2010b, Royle et al., 2011).  
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3) Activity centres are randomly dispersed – that is, they follow a homogeneous 

point-process model. An individual’s activity centre is equally likely to be 

anywhere within the sampling frame (Green et al. 2020). This assumption is 

violated when activity centres are clumped or overly spaced out, such as when 

habitats or features on the landscape attract or repel individuals. Model 

extensions for inhomogeneous point-process models, which account for 

landscape and habitat covariates, have been developed (Royle 2016). 

4) Activity centres are stationary. They should not move throughout the duration of 

the study (i.e., home ranges do not shift). This assumption can be relaxed when 

information about animal movement is included in the model, allowing activity 

centres to “drift” (Green et al. 2020, Royle et al. 2016). 

5) Activity centres are isotropic. Animals are assumed to travel the same distance in 

every direction from their activity centre (i.e., distances of equal magnitude from 

the activity centre). Basic SCR models further assume that animals have circular 

home ranges with use concentrated near the centre (i.e., bivariate normal home 

range utilization). Real animals do not move through real landscapes in this way; 

movement can instead be modelled using a host of other models (e.g., Fuller et 

al. 2016, Sutherland et al. 2015). 

Advantages and Limitations 

Advantages Limitations 

- Viewing a population as a collection of activity 

centres defines the sampling frame: the total 

area sampled is the area within which the 

activity centres of all individuals observed 

during a study are contained (Sollmann 2018). 

Density can therefore be thought of as the 

number of activity centres within the area 

encompassing all activity centres (Sollmann 

2018). 

- Camera traps can target roads and trails, and 

can even be baited, to increase the number of 

(re)captures (Gerber et al. 2011, Hines et al. 

2010). Maximizing the number of captures and 

recaptures increases the precision of 

estimates. 

- All individuals within the study population must 

be marked and individually identifiable. 

Animals should be identifiable in every image. 

- SCR is difficult to implement at large spatial 

scales. The model relies on spatial recaptures 

– that is, detections of the same individual at 

many different camera stations – which 

requires high camera density (i.e., multiple 

cameras per home range; Ausband et al. 

2022, Loonam et al. 2021b). Using SCR at the 

landscape level can therefore be inefficient 

(Ausband et al. 2022), although this is debated 

(Fisher, personal communication). 

- Practitioners must strike a balance between 

maximizing captures of unique individuals and 
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- SCR accounts for variation in individual 

detection probabilities (Chandler and Royle 

2013, Royle et al. 2014). 

- SCR can be used to model spatial variation in 

density (Morin et al. 2022). 

- Many other processes can be modelled using 

SCR, including individual movement patterns, 

animal distribution, resource selection and 

population dynamics (Royle et al. 2014). 

maximizing recaptures of individuals already 

detected (Morin et al. 2022).  

Simulations and Field Studies 

Camera trap SCR has primarily been used to estimate the densities of spotted and 

striped felids like tigers, jaguars and leopards (see the list of 95 papers in Green et al. 

(2020), Supplementary Table 1). 

A recent metanalysis found that SCR was the only camera trap density model powerful 

enough to detect moderate-to-major population changes (i.e., 20-80% increases or 

decreases; Morin et al. 2022). This is in contrast with unmarked methods, which 

alarmingly often failed to detect even drastic population changes (i.e., 80-90% increases 

or decreases; Morin et al. 2022). Yet, SCR models are not “foolproof”. Green et al. 

(2020) found less than ¼ of camera trap SCR studies produced density estimates 

precise enough for typical standards in wildlife management (i.e., coefficient of variation 

(CV) ≤ 0.20; Williams et al. 2002). SCR can also perform poorly when sampling design 

is not carefully considered (Morin et al. 2022). 

Extensions of SCR for unmarked and partially-marked populations have been 

developed. These models are discussed in later sections (see 2.2.1 Spatial Count, 2.3.1 

Spatial Mark-Resight and 2.3.2 Spatial Partial Identity Model). 
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2.2 Unmarked Populations 

2.2.1 Spatial Count (or Unmarked Spatial Capture-Recapture) 

 

How the Model Works 

A spatial count (SC) model is essentially a spatial capture-recapture (SCR; see 2.1.2 

Spatial Capture-Recapture) model with an extension to account for unmarked animals’ 

unknown identities (Royle et al. 2014). SC, then, is formulated in much the same way as 

SCR: populations are treated as collections of individual activity (or home range) 

centres, and spatial detection data is used to infer the number and locations of these 

activity centres (see How the Model Works in the SCR section). Instead of identifying 

animals and constructing individual detection histories (i.e., each individual’s spatial 

pattern of detections), however, SC uses trap-specific counts (i.e., the tally of animal 

detections at each trap of known location) and the correlation structure among trap-

specific counts to estimate the number and location of activity centres (Royle et al. 

2014, Sun et al. 2022). 

Like SCR, an SC model is composed of a spatial process model and an observation 

model. The spatial process model, which describes how activity centres are distributed 

across the landscape, is a homogeneous point-process model – a completely random 

pattern of points in space (Baddeley, no date; Royle 2016). The observation model, 

which describes where individuals are detected on the landscape, is constructed as if 

we know each individual’s detection history and the size of the population (Chandler 
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and Royle 2013). As Royle et al. (2014) put it: “[SC] is formulated in terms of the data 

we wish we had, i.e., the typical [detection] history data observed in [SCR] studies of 

marked animals.” We can construct an SC model in this way because trap-specific 

counts of animals arise from those animals’ detection histories; in other words, counts 

are a simplified version of the data that would have been collected, had individuals been 

identifiable (Chandler and Royle 2013, Sun et al. 2022). 

To relate trap-specific counts to detection histories, we use the equation: 

𝑛𝑗𝑘 = ∑ 𝑦𝑖𝑗𝑘

𝑁

𝑖=1

 

where 𝑛𝑗𝑘 is the count of animals at sampling location 𝑗 and during sampling period 𝑘; 𝑁 

is population size; and 𝑦𝑖𝑗𝑘 is individual 𝑖's detection history at sampling location 𝑗 and 

during sampling period 𝑘 (Royle et al. 2014). So, the trap- and period-specific count 𝑛𝑗𝑘 

– the information we gather for SC – is the same as the sum of every individual’s 

encounter history at that trap – the information we gather for SCR (Royle et al. 2014). 

To approximate population size, we take a data augmentation approach. Population 

size 𝑁 is treated as a subset of some larger, hypothetical population of size 𝑀 (the 

“augmented” population; Royle and Dorazio 2012), such that: 

𝑁 = ∑ 𝜔𝑖

𝑀

𝑖=1

 

where 𝑀 ≫ 𝑁 and 𝜔𝑖 is the probability of existence of individual 𝑖 within population 𝑁 

(Chandler and Royle 2013, Sun et al. 2022). 𝜔𝑖 is Bernoulli distributed – an animal can 

be present (i.e., 𝜔𝑖 = 1) or absent (i.e., 𝜔𝑖 = 0) – and depends on the number of 

detections at traps and the distance between traps and individuals’ activity centres 

(Chandler and Royle 2013, Sun et al. 2022). 

Note that, for SC, a “trap” is simply a tool or method for collecting count data. Trap types 

include hair snags, track plates, acoustic recording devices, human point-count 
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observers and camera traps (Chandler and Royle 2013, Royle et al. 2014). We will refer 

to camera traps for the remainder of this section. 

The aim of SC sampling design is to infer the number and location of activity centres by 

inducing correlation (i.e., linear relation) between the number and location of detections 

(Burgar et al. 2019, Chandler and Royle 2013, Sollmann 2018, Sun et al. 2022). To this 

end, camera traps must be deployed close enough together that individuals will be 

detected at multiple locations (Chandler and Royle 2013). Grid or clustered designs 

may be best (Burgar et al. 2019, Clark 2019, Sun et al. 2014). 

Assumptions 

SC models make the same assumptions as SCR models (see above), but do not 

require individual identification. 

Advantages and Limitations 

Advantages Limitations 

- SC relies on two simple inputs: the number of 

animal detections at each camera station and 

the locations of those camera stations 

(Chandler and Royle 2013). There is no need 

to collect or measure any other information. 

- As with SCR, treating a population as a 

collection of activity centres defines the 

sampling frame: the total area sampled is the 

area within which the activity centres of all 

individuals detected during a study are 

contained (Sollmann 2018). Density is thus the 

number of activity centres within the area 

encompassing all activity centres (Sollmann 

2018). 

- Cameras can be deployed on roads and trails 

or baited to increase the number of 

(re)captures. 

- SC density estimates tend to be quite 

imprecise (Chandler and Royle 2013, Morin et 

al. 2022, Royle et al. 2014). 

- The precision of SC density estimates 

decreases as the number of individuals 

detected at given a camera station increases 

(Morin et al. 2022). Thus, the more individuals’ 

home ranges overlap, the less precise the 

density estimate (Augustine et al. 2019). 

- The model can fail to work for very low-density 

populations or elusive species, as (re)captures 

are too few to confidently infer the number and 

location of activity centres (Burgar et al. 2018). 

- Likewise, the model can fail to work for very 

high-density populations with evenly-spaced 

activity centres (Burgar, personal 

communication), since trap-specific counts will 

be too similar across the camera network – 

muddling activity centre inference and often 

leading to non-converging models. 

- SC models are ill-suited to populations that 

exhibit group-travelling behaviour (Sun et al. 

2022). 
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- SC models are sensitive to sampling design; 

trap layout can dramatically affect the 

accuracy and precision of density estimates 

(Sollmann 2018). 

- Camera stations must be spaced close 

enough together that animals are detected at 

multiple camera stations (Chandler and Royle 

2013). SC is therefore challenging to 

implement at large scales, as many cameras 

are needed. 

Simulations and Field Studies 

The relatively few studies that have tested SC models suggest that they tend to produce 

fairly accurate but imprecise density estimates. 

- A study on fishers showed that, compared to genetic SCR, SC underestimated 

density and estimates were less precise (Burgar et al. 2018). 

- Evans and Rittenhouse (2018) found that SC yielded accurate but less precise 

estimates of black bear density than camera trap SCR. 

- Another study compared estimates of caribou density from SC with estimates 

from the spatial partial identity model (SPIM; see 2.3.2 Spatial Partial Identity 

Model). In this system, SC likely underestimated density compared with SPIM – 

perhaps because the model interpreted captures of many individuals as 

recaptures of a few individuals – and was less precise and more variable year-to-

year (Sun et al. 2022). 

- SC was used to estimate the densities of caribou, moose, wolf, coyote and black 

bear populations in the oil sands region of Alberta (Burgar et al. 2019). Estimates 

for all species were imprecise; some had confidence intervals with upper and 

lower bounds that differed more than 10-fold. The authors note, however, that 

other density estimation methods used in the region (e.g., aerial surveys) are not 

more precise than SC (Burgar et al. 2019). The researchers also simulated their 

data, finding that SC tended to underestimate density when the number of 

captures and spatial recaptures (i.e., spatially-correlated detections between 

cameras) were low. 
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Box 1. The unmarked models that follow estimate density within the collective viewshed area (i.e., the combined fields-of-view of 

all cameras in a network) and assume that this estimate applies to the larger study area (Gilbert et al. 2021). This is in contrast to 

spatial capture-recapture (SCR; see 2.1.2 Spatial Capture-Recapture) models and derivatives – including spatial count (SC; see 

2.2.1 Spatial Count), spatial mark-resight (SMR; see 2.3.1 Spatial Mark-Resight) and the spatial partial identity model (SPIM; see 

2.3.2 Spatial Partial Identity Model) – which estimate density over a defined area. 
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2.2.2 Distance Sampling (or Camera Trap Distance Sampling) 

 

How the Model Works 

Distance sampling (DS) theory was developed in the early 1990s to estimate density 

from line- or point-transect surveys, including aerial surveys (e.g., Alberta Environment 

and Parks 2016; Buckland et al. 1993). The novelty of the DS approach is in its capacity 

to correct for imperfect detection (i.e., not observing animals that are present) by 

measuring the distance between survey lines or points and animals (Morin et al. 2022). t 

(Buckland et al. 2015, Gilbert et al. 2021). 

The DS model was adapted for use with camera 

trap data by Howe et al. (2017). Camera trap 

DS capitalizes on the similarities between 

camera trap surveys and human-observer point 

transect surveys – for example, both cameras 

and people tabulate the number of animals seen 

in a “snapshot” moment from a point in space 

(Buckland 2006). There are, however, important 

differences to account for. For one: in human-

observer studies, a point is sampled for an 

instant, and only one or a few times total; a camera, in contrast, samples the same point 

for a long period of time (Palencia et al. 2021). For another: human observers can pivot 

360º around a point to count animals, while cameras are fixed in place and sample only 

Figure 6. An example detection function. The 

probability of detecting an animal decreases with 

increasing distance from the observer. 
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a fraction of a circle (Howe et al. 2017). Camera trap DS must therefore include inputs 

of time and viewshed angle. The equation derived by Howe et al. (2017) is: 

𝐷 =
𝑌

𝜋𝑤2𝑒𝑝
 

where 𝑌 is the number of detection events, 𝑤 is the truncation distance (i.e., the 

distance beyond which animal-camera distances are no longer considered), 𝑒 is the 

sampling effort, and 𝑝 is the probability of capturing an image of an animal within 

distance 𝑤 (Howe et al. 2017). 

To calculate sampling effort 𝑒: let us first consider temporal effort. At a given camera, 

temporal effort is a function of the camera’s total sampling time 𝐻 and a predetermined 

interval 𝑡 units of time apart, at which the distance between camera and animal(s) is 

measured, such that temporal effort at the camera is 𝐻/𝑡 (Howe et al. 2017). If that 

same camera has a viewshed angle of 𝜃 radians, the fraction of a circle it samples is 
𝜃

2𝜋
. 

Taken together, sampling effort can therefore be expressed as: 

𝑒 =
𝜃𝐻

2𝜋𝑡
 . 

To estimate the probability of capturing an animal 𝑝: practitioners must estimate the 

horizontal distance 𝑟 between a camera and the centre of every animal detected, at 

each snapshot moment 𝑡 intervals apart, for as long as animals are within the viewshed 

(Howe et al. 2017). Howe et al. (2017) recommend a 𝑡 of 0.25 to 3 seconds; if the focal 

species is fast-moving or rare, and/or cameras have fast trigger speeds, practitioners 

should use a smaller 𝑡. Measurements of 𝑟 can then be inputted into a detection 

function, 𝑓(𝑟), which describes the probability an animal at distance 𝑟 is detected given 

0 ≤ 𝑟 ≤ 𝑤 – producing an estimate of 𝑝 (Buckland et al. 2015). 

Options for measuring camera-animal distance 𝑟 include: 1) comparing images of 

animals to reference images of field crew or objects at known distances from the 

camera (manually or automated; Hauke et al. 2022, Howe et al. 2017); 2) placing 



 

 

27 

permanent reference objects at known distances from the camera so they are visible in 

every capture (Palencia et al. 2021); 3) physically measuring out camera-animal 

distances in the field, using animal images as references (Rowcliffe et al. 2011); and 4) 

a recently-developed, fully-automated approach (https://github.com/PJ-

cs/DistanceEstimationTracking) which does not require reference images or objects 

(Johanns et al. 2022). 

If the species of interest is regularly and predictably inactive (e.g., rests at night), 

estimates of density must be corrected for activity level to minimize bias (Howe et al. 

2017, Palencia et al. 2021). Practitioners may choose to set total sampling time 𝐻 as 

the time the study population was active and available for detection; another option is to 

correct density 𝐷 for the proportion of time animals are active, such that: 

𝐷𝐶 = 𝐷 ×
1

𝑎
 

where 𝐷𝐶  is the corrected density estimate and 𝑎 is activity level (Howe et al. 2017, 

Palencia et al. 2021). Activity level is determined as per Rowcliffe et al. (2014). 

Assumptions 

1) Camera placement is independent of animal distribution. Said differently: 

cameras should not target places animals are known to prefer or avoid (Howe et 

al. 2017). When sampling designs are representative (i.e., random or systematic 

random placement of cameras), this assumption is met (Buckland et al. 2015, 

Howe et al. 2017). Note that this assumption extends to camera orientations – 

cameras should point either in random directions or in one consistent direction 

(Howe et al. 2017). 

2) Perfect detection at distance 0. In mathematical terms: the probability of 

detecting an animal at distance 𝑟 = 0 is 100% (i.e., 𝑓(0) = 1; Buckland et al. 

2015). In practical terms: animals are always detected when directly in front of 

the camera. This assumption is violated when an animal passes the camera at 

distance 0, but: 1) is above or below the viewshed, 2) is not identifiable (e.g., only 

https://github.com/PJ-cs/DistanceEstimationTracking
https://github.com/PJ-cs/DistanceEstimationTracking
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a part of the animal is captured), or 3) the camera is not triggered (Howe et al. 

2017). Failure to detect animals at distance 0 results in underestimates of density 

(Buckland et al. 1993). Violations can be minimized by deploying cameras at the 

correct height for the species of interest; cameras can also be deployed in pairs 

and facing each other to catch causes of violation (Howe et al. 2017). 

3) Distances are measured exactly. Incorrectly measuring the distance between 

cameras and animals impacts the detection function, and thus estimates of 

density (Buckland et al. 2015). 

4) Animals are detected at their initial locations. This assumption is violated when 

animals move prior to detection – either away from or towards the observer 

(Buckland et al. 1993). Either is possible in a camera trapping context, as some 

animals may deviate their “normal” course in response to cameras and/or 

reference objects, whether to avoid or investigate. Violations of assumption 4 are 

difficult to detect and account for (Buckland et al. 1996, Palencia et al. 2021). 

Advantages and Limitations 

Advantages Limitations 

- Animal movement does not bias density 

estimates since camera-animal distance are 

measured at instants in time (intervals of 

duration 𝑡 apart; Howe et al. 2017). 

- There is some evidence the DS model can be 

applied to low-density populations (Palencia et 

al. 2021). 

-  DS is best-suited to larger animals. The 

smaller the focal species, the lower camera 

traps must be set, which reduces the depth of 

the viewshed, and thus sampling size and the 

flexibility of the model (Howe et al. 2017). 

- The DS model does not accommodate spatial 

variation in density (Gilbert et al. 2021). 

- Calculating camera-animal distances can be 

labour-intensive and time-consuming. 

However, recently developed techniques (e.g., 

Johanns et al. 2022) show promise for 

simplifying and automating the tedious process 

of camera-animal distance measurement. 

- Practitioners must have a good understanding 

of focal populations’ activity patterns. Density 

estimates can be biased when regular periods 

of inactivity are not accounted for (Howe et al. 

2017, Palencia et al. 2021). 

 



 

 

29 

Simulations and Field Studies 

Howe et al. (2017) ran simulations of “complex” animal movement patterns (i.e., animals 

moved with variable speeds, meandered, and rested periodically), and found that, when 

periods of rest were excluded from analyses, the DS model produced unbiased and 

precise estimates of density (CV ≅ 0.10). When periods of rest were included, in 

contrast, DS performed poorly and inconsistently – whether animals rested within the 

viewshed or outside of the viewshed (i.e., were not detected). Animal activity patterns 

should therefore be considered when implementing the DS model; practitioners should 

have a strong understanding of when their species of interest is active versus inactive. 

Note that population and camera trap densities were both quite high in this simulation – 

10 animals/km2 and 6.25 camera traps/km2 (Howe et al. 2017).  

In northwestern Africa, camera trap DS produced higher estimates of duiker density 

than line-transect surveys – a method generally thought to underestimate the densities 

of forest-dwelling ungulates (Howe et al. 2017). The researchers collected video data. 

Another study in northwestern Africa found that the DS model performed variably for 

different species (Cappelle et al. 2021). DS density estimates of a common ungulate – 

duiker – were comparable to previous estimates (line-transect surveys and Howe et al.’s 

(2017) camera trap DS study), and similarly precise. For semi-arboreal chimpanzees, 

DS-derived density estimates were biased low and depended greatly on measures of 

activity level (i.e., the proportion of the day chimpanzees were on the ground and 

available for detection). Compared with other studies: 

- DS performed inferiorly to spatial capture-recapture (SCR; see section 2.1.2 

Spatial Capture Recapture) with individual identification (Després-Einspenner et 

al. 2017, Cappelle et al. 2019). 

- DS estimates were, however, comparable to labour-intensive line-transect nest 

surveys. 

The DS model performed inconsistently for rare species in this system, producing 

reasonable estimates of leopard density but questionable estimates of elephant density. 
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DS-derived leopard density was similar to a previous study combining collar, camera 

and track data (Cappelle et al. 2021, Jenny 1996). DS-derived elephant density was 

nearly double that from previous line-transect surveys and extremely imprecise (0.60 < 

CV < 2.00; Cappelle et al. 2021). As per Howe et al. (2017), videos were also used for 

this study. 

Palencia et al. (2021) used DS to estimate the densities of red deer and boar. They 

found that the model performed similarly to the random encounter model (REM; see 

2.2.3 Random Encounter Model) and the random encounter and staying time model 

(REST; see 2.2.4 Random Encounter and Staying Time) for both species. Compared to 

independent density estimates (line-transect distance sampling for red deer, drive 

counts for boar): DS yielded a comparable density for deer but underestimated density 

for boar, perhaps due to slow camera recovery times (Palencia et al. 2021). Precision of 

camera trap DS was quite low, with an average CV of 0.42. Still images were used. 

Bessone et al. (2020) used camera trap DS to estimate the densities of 14 vertebrate 

species, finding that low population density and reactivity to cameras were major 

sources of bias, and that the model applied best to evenly-distributed (versus clumpily-

distributed) populations. Precision was highest for common, high-density species, but 

satisfactory (i.e., CV < 0.35) for rare-but-widely-distributed species. 

Finally, another density methods comparison study showed that camera trap DS was 

more precise than genetic mark-recapture, live capture-recapture, REM, and spatial 

count (SC; see section 2.2.1 Spatial Count) for pine marten (CV = 0.34; Twining et al. 

2022). While all methods produced densities within accepted ranges, DS tended to 

underestimate density (Twining et al. 2022). 
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2.2.3 Random Encounter Model 

 

How the Model Works 

The random encounter model (REM) treats animals like ideal gas particles – that is, like 

randomly moving entities which are neither attracted to nor repelled by one another or 

landscape features (Gilbert et al. 2021, Rowcliffe et al. 2008). If animals behave like 

ideal gas particles, the rate at which they “bump into” and trigger camera traps is a 

function of animal movement, population density and the area within which cameras 

detect animals (Nakashima et al. 2018). So, the more animals move, the more animals 

in a population, or the larger the viewshed – the more images will be captured (Palencia 

2022). This relationship can be used to estimate density, such that: 

𝐷 =
𝑌

𝑇
×

𝜋

𝑣𝑟(2 + 𝜃)
 

where 𝑌 is the number of detection events, 𝑇 is the total sampling time and 𝑣 is animal 

movement speed (or the distance travelled by an individual in a day); and 𝑟 and 𝜃, the 

mean radius and angle of the detection zone (i.e., the area within which animals are 

detected with certainty) are used to calculate the area of the detection zone (Nakashima 

et al. 2018, Pettigrew et al. 2021, Rowcliffe et al. 2008). 

Independent estimates of 𝑣 can be sourced from telemetric studies, estimated from 

intensive observation or calculated using camera trap data (Nakashima et al. 2018, 

Rowcliffe et al. 2008, Rowcliffe et al. 2016). To calculate 𝑣 using camera traps: for each 

observation, practitioners should determine how long it took the animal to pass through 
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the viewshed (i.e., time between first and last image in a sequence), then measure the 

distance the animal travelled by either a) retracing their path in the field using photos as 

a guide or b) estimating their movement image-to-image during photo processing using 

markers (Pfeffer et al. 2018, Rowcliffe et al. 2016). 

𝑟 and 𝜃 can be measured in a few different ways. The 

first is by field trial: the detection zone is delineated by 

approaching the camera trap from different angles and 

at different speeds, recording where the sensor is 

triggered (Figure 7; Rowcliffe et al. 2008). The second 

is using a distance sampling method described in 

Rowcliffe et al. (2011). The third is by setting a focal 

area of standard size and shape (i.e., of known 𝑟 and 

𝜃), within which detection is assumed to be perfect; 

only animals captured within the focal area are 

considered for analyses (Nakashima et al. 2018). 𝜃 

may also be specified by the manufacturer (Pettigrew 

et al. 2021). 

When the species of interest travels in packs or herds, density as calculated per the 

equation above represents group density (i.e., the number of groups per unit area; 

Rowcliffe et al. 2008). To convert group density to individual density, 𝐷 must be 

multiplied by an independent estimate of average group size (Rowcliffe et al. 2008). 

Assumptions 

1) Population closure. The size of the focal population should not change over the 

course of the study; that is, there should be no births, deaths, immigration or 

emigration. To meet this assumption, practitioners should set relatively short 

sampling periods that fall outside of major breeding, mortality and migration 

events (Rowcliffe et al. 2008). Note, however, that sampling periods must also be 

long enough to collect at least 10 events per focal species per camera station 

Figure 7. Measuring 𝑟 and 𝜃 by field 

trial. The perimeter of the detection zone 

is determined by approaching the 

camera from different angles and at 

different speeds, and noting where the 

camera’s sensor (red flash) detects 

motion (red dots). 
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(Rowcliffe et al. 2008). Roughly 100 to 1,000 camera trap days are needed for 

most carnivores and ungulates (Rowcliffe et al. 2008). If population size changes 

during a survey, the REM will provide a density estimate averaged across the 

trend (Rowcliffe et al. 2008). 

2) Detections are independent. It is assumed that detection events are bounded 

and separate – that is, that animals (or groups of animals) clearly enter and then 

exit the viewshed area (Rowcliffe et al. 2008). Animals that linger in front of the 

camera violate assumption 2; this can be an issue, given the ubiquity of 

investigative behaviour at cameras. At the image processing stage, practitioners 

should examine image series to distinguish independent detection events 

(Rowcliffe et al. 2008). 

3) Cameras are deployed representatively. They should not target roads, trails, 

water bodies or other features where detection probability might be particularly 

high, nor should they be preferentially placed near animal sign (Rowcliffe et al. 

2008). One way to achieve a representative sampling design is to deploy 

cameras in a random configuration. Failure to meet this assumption results in 

biased density estimates (e.g., Cusack et al. 2015). 

4) Animals behave like ideal gas particles. This assumption will never be met in 

actual populations; animals simply do not move completely randomly and 

independently (because of inter- and intraspecific interactions, grouping 

behaviour, complex landscapes, etc.). Nevertheless, the REM appears to be 

robust to “typical” (i.e., non-random, non-independent) patterns of animal 

movement (Rowcliffe et al. 2008). Attraction to or avoidance of camera traps 

(e.g., baiting, luring, trap shyness) will, however, bias density estimates 

(Rowcliffe et al. 2008). 

Advantages and Limitations 

 

Advantages Limitations 

- Sampling design is not influenced by home 

range size (Rowcliffe et al. 2008). No prior 

knowledge of home range size is required. 

- The REM is sensitive to animal movement 

speed. Inputting biased movement data into 

the model produces misleading density 
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estimates – particularly for slow-moving 

species (Morin et al. 2022, Pettigrew et al. 

2021). Ideally, movement speed should be 

measured for the population and period of 

interest – preferably using multiple methods 

(Jensen et al. 2022, Morin et al. 2022, 

Pettigrew et al. 2021). When this is not 

possible, the movement rates of several 

similar populations (i.e., same species, 

occupying comparable habitats) should be 

used (Pettigrew et al. 2021). Telemetry data 

should be collected at high fix rate (i.e., GPS 

points taken often throughout the day) and 

corrected for tortuosity (Jensen et al. 2022, 

Pettigrew et al. 2021). 

- Where no movement data is available: 

collaring, intensively observing or using 

camera data to estimate movement speed is 

challenging, costly and tedious (Gilbert et al. 

2021, Nakashima et al. 2018). 

- Detection zone area varies with species, 

habitat and camera placement, so must be 

calculated for each station and calibrated to 

animals of different sizes (Gilbert et al. 2021). 

- Because the REM assumes that animals move 

randomly and independently across the 

landscape, it cannot be used to make 

inferences about spatial variation in density 

(Gilbert et al. 2021). 

- Cameras cannot be targeted, baited or lured to 

maximize detections; the REM may therefore 

be ill-suited to low-density and elusive species 

(Morin et al. 2022). 

- When most detections occur at a small subset 

of camera stations, the precision of the REM 

decreases (Loonam et al. 2021a). 

Simulations and Field Studies 

Of all the unmarked density models, the REM has undergone the most empirical testing 

(Palencia et al. 2021). Rowcliffe et al. (2008) piloted the model in an enclosed animal 

park housing populations of known sizes, and found that the REM produced accurate 

density estimates for three out of four target species (two cervids and a marsupial). The 

model underestimated the density of the fourth species (a large rodent) because 
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cameras were deployed in habitats it did not frequent – a violation of assumption 3 

(Rowcliffe et al. 2008). 

The REM has proven robust in many study systems. Examples include: 

- Palencia et al. (2021) found that the REM yielded similar density estimates as 

two non-camera methods, line-transect sampling and drive counts, for red deer 

and wild boar, respectively. The researchers also compared the REM to two 

other camera methods (random encounter and staying time (REST) and distance 

sampling (DS) models) – of the three, the REM was the most consistent 

(Palencia et al. 2021). In this study, animal movement speed 𝑣 was determined 

using camera trap data. 

- REM-derived density estimates of a mountain ungulate were highly consistent 

with visual count survey results (Kavčić et al. 2021). Animal movement speed 

was measured using camera trap data (Kavčić et al. 2021). 

- A study on black bears in Québec found that the REM produced comparable 

results to DNA mark-recapture using hair samples, but that REM estimates were 

less precise (Pettigrew et al. 2021). The researchers estimated animal movement 

speed by averaging 19 years of telemetry data from four neighbouring black bear 

populations (Pettigrew et al. 2021). 

- In the boreal forest of Washington state, REM and live-trapping spatial capture-

recapture (SCR) produced similar density estimates for snowshoe hare (Jensen 

et al. 2022). The REM and the REST performed identically in this system; both 

models outperformed the time-to-event (TTE) model (Jensen et al. 2022). 

Measures of animal movement speed 𝑣 were pulled from camera data and 

combined with telemetry data from a study in the Yukon. 

- The REM yielded similar density estimates as, and was more precise than, live-

trapping SCR at almost 90% of sampling sites in a study of hedgehogs (Shaus et 

al. 2020). Moreover, the REM was powerful enough to detect a 25% population 

change in this system (Schaus et al. 2020). Animal movement speed was 

estimated from camera trap images. 
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The REM has also significantly over and underestimated the densities of natural 

populations. In Africa, for example, estimates of lioness density using the REM were 

significantly higher than from pride censuses (Cusack et al. 2015). REM-derived 

densities skewed high because cameras were placed under shady trees, which 

attracted lions in the daytime (a violation of assumption 3), inflating the number of 

detection events 𝑌 (Cusack et al. 2015). When only nighttime detections were 

considered, however, REM-derived densities did not differ significantly from census-

derived densities (Cusack et al. 2015). 𝑣, animal movement speed, was determined via 

intensive observation. A study comparing the REM with fecal DNA mark-recapture 

found that the REM underestimated marten density by 60% or more (Balestrieri et al. 

2016). Animal movement speed 𝑣 may have biased density low; the researchers 

estimated 𝑣 from studies of pine marten occupying a different kind of habitat, where 

individuals may have moved more (Balestrieri et al. 2016). 

Simulations suggest that, to achieve adequate precision using the REM, a minimum of 

20 to 40 camera stations should be deployed for as long as needed to collect at least 10 

to 20 image sets (Rowcliffe et al. 2008). For populations with variable detection: about 

100 cameras are needed to obtain a level of precision appropriate for wildlife 

management (coefficient of variation (CV) of 0.20 or less; Palencia et al. 2021, Williams 

et al. 2002). To collect 10 to 20 image sets takes approximately 100 to 1,000 camera 

trap days for most mammal species; for rare species, cameras may need to be 

deployed for 1,000 camera trap days or more (Rowcliffe et al. 2008). 
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2.2.4 Random Encounter and Staying Time 

 

How the Model Works 

The random encounter and staying time (REST) model is an extension of the random 

encounter model (REM; Gilbert et al. 2021). Like the REM, the REST treats animals like 

ideal gas particles (i.e., like randomly and independently moving entities); unlike the 

REM, the REST does not require measures of animal movement speed. Instead, the 

model uses the time animals spend in the camera viewshed (i.e., their “staying time”) as 

a proxy for animal movement speed, since the two measures are inversely proportional 

(Nakashima et al. 2018). 

The REST equation is a modified version of the REM equation which substitutes staying 

time for movement speed, and a detection area of set size for detection zone radius and 

angle, such that: 

𝐷 =
𝑌𝑇

𝑠𝐻
 

where 𝑌 is the number of detections, 𝑇 is the staying time, 𝑠 is the area within which all 

individuals are certain to be detected (hereafter, focal area), and 𝐻 is the total research 
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period (i.e., the total sampling time; Nakashima et al. 2018). This equation produces an 

estimate of density 𝐷 at a single camera; to determine population density for the study 

area, density estimates must be averaged across camera stations.  

To implement the REST model, practitioners must first establish the focal area 𝑠. 

Methods at practitioners’ disposal include testing focal areas of different sizes under 

controlled conditions (e.g., using domestic animals) and determining detection 

probabilities (Nakashima et al. 2018, Rowcliffe et al. 2011), or using distance sampling 

(DS) functions to delineate the zone of certain detection (as described in Hofmeester et 

al. 2017 and implemented in Palencia et al. 2021). Although it can be any shape, a 

triangular focal area maximizes the number of usable detections (fewer captures fall 

outside of the focal area; Nakashima et al. 2018). 

Once established, the focal area is 

staked out in front of every camera in the 

field (e.g., using ropes and pegs), a 

reference image is taken, and any 

staking equipment is removed before the 

camera is left to collect images or videos 

(Nakashima et al. 2018, Palencia et al. 

2021, 中島啓裕 2021). During image 

processing, captures of animals are 

overlaid on reference images (Figure 8A; 

中島啓裕 2021). Alternatively, the focal 

area can be superimposed on captures of 

animals as in Figure 8B. Markers (e.g., 

stones) placed at known distances from 

the camera are used as a guide for 

placing the focal area (Palencia et al. 

2021). Staying time 𝑇 is the time an 

animal spends in the focal area; it is 

Figure 8. A) Still from 中島啓裕’s (2021) video series. Example 

of overlaying a video recording of an animal on a reference 

image of the focal area (faint triangle) to determine staying time 

𝑇. B) Still from Appendix S2 from Palencia et al. (2021). 

Example of superimposing the focal area on an image capture. 
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measured from the moment an animal’s hind leg enters the focal area until it exits (i.e., 

𝑇𝑒𝑥𝑖𝑡 − 𝑇𝑒𝑛𝑡𝑒𝑟). 

Importantly, estimates of density 𝐷 must be corrected for activity level – that is, the 

proportion of time animals are active – such that: 

�̂� = 𝐷 ×
1

𝑎
 

where �̂� is the corrected density estimate and 𝑎 is the activity level (Palencia et al. 

2021, Rowcliffe et al. 2014). Activity level is determined as per Rowcliffe et al. (2014). 

Assumptions 

1) Population closure. In contrast to models like the REM, immigration, emigration, 

births and deaths are permissible under the REST – so long as the population is 

balanced over the course of the study period (Garland et al. 2020). If population 

size does change over the course of a survey, the REST will produce an average 

density estimate for the survey period (Palencia et al. 2021). 

2) Detections are independent. In other words, captures should not be correlated in 

space or time (Amburgey et al. 2021). To mitigate breaches of this assumption, 

practitioners should minimize spatial autocorrelation (i.e., the tendency for sites 

that are close together to have similar detection records) by spacing cameras far 

enough apart (Nakashima et al. 2018). 

3) Cameras are deployed randomly relative to animal distribution. Camera cannot 

be baited or lured, nor can they be deployed in areas animals are known to 

prefer (Garland et al. 2020). 

4) Detection is perfect within the focal area. This assumption is violated when 

detections are missed because of environmental factors (e.g., obstructions, poor 

weather conditions), camera specifics (e.g., cameras are set to become inactive 

after capturing images or video, slow trigger and media-storing speeds) or other 

reasons (Nakashima et al. 2018). To minimize violations of assumption 5, 

practitioners should program cameras to remain active after detection (i.e., no 
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delay period), choose camera models with fast trigger and storing speeds, test 

detection probability within the focal area, and deploy cameras at an appropriate 

height for the species of interest (Nakashima et al. 2018, Palencia et al. 2021). 

5) Cameras should not affect animal movement. Individuals should not be attracted 

to or repelled by cameras; the former inflates staying time while the latter 

depresses it, resulting in over and underestimates of density, respectively 

(Palencia et al. 2021). Palencia et al. (2021) recommend discarding captures of 

animals investigating equipment when measuring staying time. 

6) Staying times are representative of animal movement. Said differently, detection 

events should reflect the activity level of the population: when animals are active, 

they should be captured moving across the focal area (short staying times); when 

animals are inactive, they should be captured resting in the focal area (long 

staying times). It is, however, unlikely that randomly deployed camera traps will 

capture animals during periods of inactivity (Nakashima et al. 2018). Any such 

captures should therefore be excluded from analyses, and density estimates 

corrected for activity level (i.e., the proportion of time animals spend active; 

Nakashima et al. 2018, Palencia et al. 2021, Rowcliffe et al. 2014). Activity level 

is calculated as per Rowcliffe et al. (2014). 

7) Staying times are parametrically distributed. A normal distribution (i.e., a bell 

curve) is an example of a parametric distribution (Chin and Lee 2008). Detections 

of animals resting or lingering within the focal area will skew the distribution of 

staying times right – a violation of assumption 7 (Amburgey et al. 2021). Such 

detections should therefore be excluded from analyses (Nakashima et al. 2018). 

Advantages and Limitations 

Advantages Limitations 

- Unlike the REM, the REST does not require 

independent estimates of animal movement 

speed (e.g., from telemetric studies; Gilbert et 

al. 2021). 

- Spatial variation in density can be modelled 

using the REST – another improvement over 

- Only detections within the focal area are 

considered for analysis – a condition that may 

exclude many captures, and could limit the 

model’s applicability to low-density species 

(Nakashima et al. 2018, Palencia et al. 2021). 

- Because the REST produces density 

estimates by camera station, and these 
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the REM (Gilbert et al. 2021, Nakashima et al. 

2020). 

- The model can be applied to group-travelling 

species (Brownlee at al. 2022, Garland et al. 

2020). When multiple individuals pass through 

the camera viewshed at a time, practitioners 

must simply determine the staying time of 

each individual (Garland et al. 2020). 

- The model can also be applied to territorial 

and non-territorial species, so long as cameras 

are placed randomly (Garland et al. 2020). 

- The REST is robust to variation in movement 

speed, home range size and population size 

(Garland et al. 2020). 

- Even relatively low camera coverage (e.g., 1% 

of total study area sampled) can result in 

accurate REST-based density estimates 

(Garland et al. 2020, Nakashima et al. 2018).  

estimates must be averaged across stations to 

determine population density:  estimates of 

error represent the differences in density 

among cameras, rather than a truly 

probabilistic estimate of density precision 

(Fisher, personal communication). 

- Rowcliffe et al.’s (2014) method for estimating 

activity level relies on the assumption that all 

individuals in a population are active during 

peak periods. When this assumption is not met 

– that is, when some individuals are not active 

during peak times – activity level is 

overestimated, and thus density is 

underestimated (Nakashima et al. 2018). 

- The REST model was developed for video 

data (Becker et al. 2022, Brownlee et al. 2022, 

Nakashima et al. 2018). Videos tend to fill SD 

cards and drain batteries faster than still 

images (Granados 2021, Proctor et al. 2022); 

compared to similar models, then, the REST is 

more memory- and energy-consumptive 

(Nakashima et al. 2018). Still image data can 

be used if cameras are set to take photos 

continuously upon sensing motion, with 

minimal lag between triggers (see Jensen et 

al. 2022, Palencia et al. 2021). Note, however, 

than Palencia et al. (2021) found that image-

based density estimates were insignificantly 

lower than video-based estimates – further 

investigation may be necessary to establish 

the effects of image versus image data on the 

REST. 

Simulations and Field Studies 

Nakashima et al. (2018) ran random walk simulations to test the REST’s performance. 

In its simplest form, a random walk models the series of steps an animal (the “walker”) 

takes – each in a completely arbitrary direction, or in a pattern informed by behaviour, 

ecology and environment (Codling et al. 2008). Nakashima et al.’s (2018) simulations 

showed that the REST model was robust to grouping behaviour and variation in animal 

movement speed. More specifically, the REST produced accurate estimates of density 

when animals travelled in pairs, and when animals covered different distances during 

the sampling period (Nakashima et al. 2018). The model produced biased results, 

however, when captures of animals resting in the focal area were included in staying 

times (Nakashima et al. 2018). To minimize bias: 1) any detections with exceedingly 
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long staying times (i.e., right outliers) should be discarded; and 2) density estimates 

should be corrected for activity level 𝑎 using the method outlined in Rowcliffe et al. 

(2014; Nakashima et al. 2018). 

Garland et al. (2020) ran a “real life” simulation of the REST using human volunteers. 

The researchers found that the model produced accurate density estimates, even when 

home range size, population size and movement patterns varied – but that scenarios in 

which people moved at a constant rate yielded more precise estimates than those in 

which people rested periodically (Garland et al. 2020). Larger populations were also 

associated with lower-precision estimates (i.e., the bigger the population, the less 

precise the density estimate) – as population size increases, so too does the variation in 

staying times, reducing the overall precision of REST estimates (Garland et al. 2020). 

Note than humans were fully agnostic to detectors – an assumption often violated by 

animals (Caravaggi et al. 2020). 

Both Garland et al. (2020) and Nakashima et al. (2018) tested the effect of sampling 

effort on the REST; both concluded that the model can yield accurate results, even 

when effort is relatively small (1% of study area sampled or 10 cameras deployed for 10 

days, respectively). Note, however, that these results pertain to very high-density 

populations – animal density was 125 to 750 individuals per km2 in Garland et al. (2020) 

and 10 individuals per km2 in Nakashima et al. (2018) – and likely do not apply to 

average-to-low density populations. Low sampling effort was also linked to imprecision 

– the fewer cameras deployed, the less precise the density estimate (Garland et al. 

2020, Nakashima et al. 2018). Thus, although little sampling effort is needed to produce 

accurate density estimates for very dense populations, considerable sampling effort will 

be necessary for most populations, and to produce precise estimates. 

In the field: 

- The REST was initially validated by Nakashima et al. (2018), who compared 

density estimates of forest-dwelling antelopes from the camera data-based 

model and line-transect surveys (see 2.2.2 Distance Sampling). In this system, 



 

 

43 

both methods produced similar estimates of antelope density, with similar 

precision (Nakashima et al. 2018). A follow-up study in the same area further 

demonstrated that the model can produce unbiased estimates of density 

(Nakashima et al. 2020). 

- The model produced estimates of snowshoe hare density comparable to live-

trapping SCR in the boreal forest of the northwestern United States (Jensen et al. 

2022). REST- and REM-based estimates were also consistent with each other, 

and both models outperformed the time-to-event model (TTE; see 2.2.6 Time-to-

Event Model; Jensen et al. 2022). 

- Palencia et al. (2021) found that REST-derived density estimates were consistent 

with line-transect surveys of deer, but not with drive-count surveys of boar; the 

REST underestimated density compared to the latter. The model was, however, 

highly consistent with the REM and camera trap distance sampling (DS; Palencia 

et al. 2021). Furthermore, the REST was more precise than the other two camera 

models – although not significantly (Palencia et al. 2021). 

Practitioners should be aware that population densities were quite high in the studies 

listed above (about 1 to 160 animals per km2; Jensen et al. 2022, Nakashima et al. 

2018). Thus, while the REST model applies well to very dense populations, it may not 

be appropriate for average-to-low density populations (e.g., wildlife populations in BC, 

with densities often <1 animal/km2); further investigation is needed (Morin et al. 2022). 

The precision of the REST is also inversely related to population size – the smaller the 

population, the less precise the density estimate (Morin et al. 2022). 
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2.2.5 Time in Front of the Camera 

 

How the Model Works 

The time in front of the camera (TIFC) model is based on quadrat sampling. Typically, 

quadrats are used to sample slow- or non-moving organisms at a moment in time; as a 

simple example, a researcher lays a quadrat on the ground, counts the number of 

mussels in it and divides the count by the quadrat area. TIFC treats the camera 

viewshed like a vertical quadrat (Becker et al. 2022, Dickie 2022). Unlike a conventional 

quadrat, however, the camera viewshed samples highly mobile organisms in a relatively 

small sliver of space and over long periods time (Becker et al. 2022, Dickie 2022). The 

count of animals in the camera viewshed “quadrat,” then, can be thought of in “animal-

time” and the area covered by the quadrat in “area-time,” such that: 

𝐷 =
∑(𝑁 × 𝑇𝑉) 

𝐴𝑉 × 𝑇𝑂
 

where the numerator, animal-time, is the number of animals N multiplied by the time 

those animals spend in the viewshed TV, summed over all detections; and the 

denominator, area-time, is the area of the viewshed AV multiplied by the total camera 

operating time TO (Becker et al. 2022). Using this equation, density must be calculated 

for each species at each camera station, then averaged across the camera network. 

To calculate AV: in the field, markers (e.g., poles) must be placed at known distances 

from the camera to divide the viewshed into distance bins; during analysis, the 



 

 

45 

proportion of detections in each bin is determined (Becker et al. 2022). The camera 

angle of view – which varies with make and model – is also needed to solve for AV. In 

most cases, TO will be the time from initial camera deployment to final camera collection 

(Becker et al. 2022). In case of displacement, damage or failure, cameras should be 

programmed to take time-lapse images, so end-of-operation time can be traced back to 

a specific day or hour (Becker et al. 2022). 

Assumptions 

1) Cameras are deployed representatively at both the landscape and micro-habitat 

scales. At the landscape level, assumption 1 can be satisfied by deploying 

cameras in a random or stratified random configuration (Becker et al. 2022). 

Meeting this assumption at the micro-habitat level is more challenging – and 

often impractical. For example: it is common practice to set camera traps to face 

habitat openings, where they can collect clear, useful images of animals. 

Targeting habitat openings, however, can bias TIFC density estimates if focal 

species prefer or avoid open spaces (Becker et al. 2022). One possible work-

around is to use remote-sensing or other geospatial tools to break down the 

study landscape and correct for non-representative placement – although this is 

still an active area of research (Becker et al. 2022). 
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2) Animal movement is not affected by 

camera traps or other field equipment. In 

other words, the time animals spend in 

front of the camera should not be 

influenced by the presence of the camera 

station (Brownlee et al. 2022). Avoidance 

of or attraction to cameras, distance stakes 

or other implements impacts the amount of 

time animals spend in the camera 

viewshed (TV), which can bias density 

estimates (Dickie 2022). For example: 

when animals investigate equipment, the 

time they spend in front of the camera 

increases, inflating density (Figure 9; 

Becker et al. 2022). Becker et al. (2022) 

found that analyses that included images of 

investigative behaviour doubled or tripled 

average moose density (depending on the 

criteria used to define investigative behaviour) compared to analyses that 

excluded such images (i.e., the “true” density of moose based on natural 

movement in front of the camera). Excluding the time animals spend interacting 

with equipment is one way of addressing violations of assumption 2 (Becker et al. 

2022), but requires practitioners to decide what they consider 

interactive/investigative behaviour (i.e., direct interaction with equipment only? 

walking to/from equipment after investigating? lingering near equipment?).  

3) Perfect detection within 5 m of the camera. Whether this assumption holds 

depends on camera make and model, animal body size and movement patterns, 

and a host of environmental variables, such as snow cover, vegetation and 

temperature (Becker et al. 2022). Practitioners should consider testing this 

assumption for their species and landscape of interest.  

Figure 9. Examples of behaviours that increase time 

in the viewshed (𝑇𝑣). A) A mule deer inspects a 

camera trap. © Cole Burton, Wildlife Coexistence 

Lab. B) A black bear pulls on the lock securing a 

camera trap to a tree. © Michael Procko, Wildlife 

Coexistence Lab. 
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Advantages and Limitations 

Advantages Limitations 

- TIFC was designed to be approachable and 

easy-to-use. Little-to-no coding is required; 

wildlife managers with an understanding of the 

statistical software R (https://www.r-

project.org/) can use the workflow and code 

developed by Becker et al. (2022) that is 

publicly available on GitHub 

(https://github.com/mabecker89/tifc-

method/tree/v1.0.1). 

- TIFC tends not to produce highly precise 

density estimates, although precision 

increases with deployment and network size 

(Dickie, personal communication). 

- Given adequate sampling design (i.e., many 

cameras deployed representatively), the TIFC 

model will produce robust estimates of high-

density species; as with many other unmarked 

models, however, TIFC is ill-suited to rare and 

elusive species (Dickie, personal 

communication). 

- The proportion of detections in each distance 

bin changes with species, season, and habitat, 

and must therefore be calculated for each 

combination of these (Becker et al. 2022). 

Simulations and Field Studies 

The TIFC model has been field-tested on several different species. For moose, TIFC 

produced similar density estimates as aerial distance sampling (DS) after TIFC-derived 

estimates were corrected for the time animals spent investigating equipment (camera 

and 5 m pole; Becker et al. 2022). This study used image data collected in Alberta at 

2,990 camera stations over the course of 6 years; despite the large sample size and 

long study duration, estimates were not very precise. 

A study of five ungulate species (moose, bison, elk, mule and white-tailed deer) in two 

enclosed parks in Alberta found that TIFC- and aerial survey-derived density estimates 

were similar for moose and bison, but that TIFC significantly overestimated elk density 

compared with aerial surveys (Foca 2021). Two potential reasons for the discrepancy in 

elk density are: 1) that aerial surveys underestimated density, since elk in the study 

area occupy forested habitats, do not form large herds during the survey period, and 

estimates were not corrected for sightability; and 2) cameras may have been 

disproportionately set in areas elk prefer (Foca 2021). Group travelling behaviour may 

also have affected elk TIFC estimates, since detection probability and time in the 

viewshed (TV) can change with group size (Foca 2021). Estimates of mule and white-

https://www.r-project.org/
https://www.r-project.org/
https://github.com/mabecker89/tifc-method/tree/v1.0.1
https://github.com/mabecker89/tifc-method/tree/v1.0.1
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tailed deer densities could not be compared with aerial survey results, since deer are 

not surveyed by air in this area. Foca’s (2021) TIFC analyses produced the first density 

estimates for deer in both parks. 

In Uganda, TIFC-derived estimates of antelope were comparable to results from camera 

trap spatial capture-recapture (SCR; Brownlee et al. 2022, Warbington and Boyce 

2020). The model performed inconsistently for black bears, caribou, white-tailed deer 

and other species, however, compared to camera-based spatial count (SC), DNA mark-

recapture and aerial survey methods (Fisher et al. in review). 
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2.2.6 Time-To-Event, Space-to-Event and Instantaneous Sampling Models 

Time-to-Event 

 

How the Model Works 

Time-to-event (TTE) analysis is used in many disciplines to estimate the rate at which 

an event occurs, by repeatedly measuring the time that elapses before said event takes 

place (Loonam et al. 2021b). A TTE model might be used in medicine, for example, to 

approximate time from diagnosis until remission or death (Clark et al. 2003). Moeller et 

al. (2018) developed an extension of the TTE framework to estimate animal density 

using camera trap data, where the “event” of interest is an animal detection, and the 

rate of interest is animals per viewshed area – density (Loonam et al. 2021b). Their 

version capitalizes on the fact that, at a randomly deployed motion-triggered camera, 

the time it takes to capture an image of an animal is a function of animal movement 

speed, detection probability and population size (Jennelle et al. 2002, Moeller et al. 

2018, Parsons et al. 2017). When movement speed is known and detection probability 

is perfect, population size can be estimated by measuring the time from an arbitrary 

starting point until an image of an animal is captured (Lukacs 2021, Moeller et al. 2018). 

The equation for camera data-based density estimation using TTE is: 

𝐷 =  
𝜆

𝑎
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where 𝜆 is the average number of animals in the viewshed, given the time until an 

animal is detected, and 𝑎 is the average viewshed area. 𝑎 is calculated using the 

equation: 

𝑎 = 𝜋𝑟2
𝜃

360
 

where 𝑟 is the trigger distance (i.e., the maximum distance from which an animal can 

reliably trigger a camera’s motion sensor), and 𝜃 is the angle of the camera lens in 

degrees (Moeller et al. 2018). 

To illustrate how 𝜆 is calculated, let’s take a simple example. We begin by dividing the 

total time cameras are active into sampling occasions, then sampling periods (Figure 

10; Moeller et al. 2018). We might choose to define a sampling occasion as a day, and 

a sampling period as one of 24 one-hour intervals in a day (Moeller et al. 2018). The 

images collected at a camera station can now be grouped by occasion and period to 

generate a detection history, and the number of sampling periods (i.e., 𝑘 out of 24) until 

an image of an animal is encountered can be determined for each sampling occasion 

(Moeller et al. 2018). The detection history at a given camera after 7 days might look 

something like {NA, NA, 7, NA, 22, 1, NA}, where NA indicates no animal detections for 

that day. Inputting this information into a likelihood equation generates the average 

number of animals in the viewshed, 𝜆 (Moeller et al. 2018). 

 
Figure 10. Adapted from Moeller et al. (2018). Visualization of how total sampling time at a camera station is broken down 

into sampling occasions and then sampling periods. 
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To account for movement, the sampling period is set as the average time animals take 

to pass through the camera viewshed (Moeller et al. 2018). Thus, practitioners need 

measures of animal movement speed. 

Assumptions 

1) Population closure. The TTE model assumes that populations do not experience 

any births, deaths, immigration or emigration during the study (Moeller et al. 

2018). To meet this assumption, practitioners are advised to choose a sampling 

area and period for which this is essentially “true” – that is, a shorter study 

period, outside of mating, mortality or migration events (Morin et al. 2022). When 

this assumption is not met, the TTE produces an estimate of average density 

across the study period (Loonam et al. 2021b). 

2) Detections are independent. At the level of the camera network: an animal that is 

captured at one camera station should not be any more or less likely to be 

captured at a neighbouring camera station (Gilbert et al. 2021). When cameras 

are deployed randomly (see assumption 3), this likely to hold (Moeller et al. 

2018). At the level of a single camera: a sampling occasion should be long 

enough that animals have the chance to spread out across the landscape 

(Moeller et al. 2018). At the animal level: individuals should move independently 

of one another, although the model appears robust to pairing and occasional 

detections of large groups (e.g., 40 individuals or more; Moeller et al. 2018). 

Detections should also be independent in time, meaning animals do not linger in 

the camera viewshed (Gilbert et al. 2021). 

3) Cameras are deployed randomly across the study landscape. Often, camera trap 

researchers will set units on roads or trails to maximize animal detections; such 

sampling designs are a violation of this assumption. Assumption 3 is also 

violated by baiting and luring cameras, as animals should not be drawn to (or 

driven away by) cameras (Moeller et al. 2018). In homogenous landscapes 

where animals move freely, this assumption can be relaxed, and cameras can be 

set to maximize animal detections at 
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4) Perfect detection. This assumption will rarely be met when camera traps are set 

to take motion-triggered pictures. The likelihood an animal will activate a 

camera's motion sensor and trigger an image to be taken will vary with 

vegetation cover, weather conditions, animal body size, grouping of individuals, 

and camera make, model and settings, among other factors (Burton et al. 2015). 

Detection probability also decreases with increasing distance from the camera 

(Rowcliffe et al. 2011). Moeller et al. (2018) provide a model extension to account 

for imperfect detection, but suggest further research. In the interim, practitioners 

can choose to analyze images of animals in close proximity to the camera, where 

detection probability can more reasonably be considered “perfect,” and exclude 

other images from analysis (Moeller et al. 2018). 

5) Animals are Poisson distributed across the study area. Individuals are equally 

likely to be anywhere on the landscape, and are neither attracted to nor repelled 

by one another (Whitlock and Schluter 2020). Overly-dispersed (i.e., territorial 

behaviour) or clumped distributions (i.e., grouping behaviour) are examples of 

violations of assumption 4 – but simulations show the model may be robust to 

such violations (Figure 11; Loonam et al. 2021b). If animals congregate in 

response to landscape topography (e.g., resources clumpily distributed), 

covariates (i.e., known confounding variables) can also be included in the model 

(Moeller et al. 2018).  

Figure 11. Simple diagrams showing dispersed, clumped and Poisson-distributed animals (red dots) in space. 
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Advantages and Limitations 

Advantages Limitations 

- The TTE model requires less image 

processing effort than many other models. 

Practitioners need only "draw” images until an 

animal is first in frame; any further images do 

not need to be processed (Moeller et al. 2018). 

- Weather, travelling and investigative 

behaviour, obstructions, camera malfunctions, 

and other factors can affect image quality, 

making it difficult to accurately count the 

number of individuals in some images (Moeller 

et al. 2018). The TTE does not rely on counts 

of animals in images – it simply relies on 

whether an individual was within frame during 

each sampling period (Moeller et al. 2018). 

- The TTE can account for spatial variation in 

density (Moeller et al. 2018). A model 

extension is available which compares 

densities at different camera stations as a 

result of habitat covariates (Loonam et al. 

2021b). 

- TTE studies are simple to scale up or down, 

since the number of cameras – not camera 

density or coverage – determines the precision 

of estimates (Loonam et al. 2021a). 100 

cameras can be used to estimate density in a 

large area just as effectively as a small area 

(Loonam et al. 2021a).  

- The TTE requires accurate measures of 

animal movement speed to set the sampling 

period (Loonam et al. 2021a, Moeller et al. 

2018, Morin et al. 2022). Obtaining movement 

information can be costly and labour-intensive. 

- The TTE model is sensitive to animal 

movement speed. Misrepresentative or 

incorrect values of movement speed bias 

density estimates (Loonam et al. 2021b). 

Ideally, movement should be measured using 

GPS collars for the study population and 

period of interest (Loonam et al. 2021b). 

- Randomly-placed cameras may not collect 

enough images of rare or elusive species. The 

TTE model is therefore best suited to relatively 

common, high-density species (Moeller et al. 

2018, Morin et al. 2022). 

Simulations and Field Studies 

Simulations show that: 

- The TTE model tends to underestimate population density. In both walk (Loonam 

2019) and random walk simulations (Moeller et al. 2018), the TTE yielded density 

estimates below the true value, whether populations were large or small, or 

animals moved quickly or slowly. Estimates were, however, particularly low for 

slow-moving species. 

- The TTE is sensitive to movement speed. Indeed, Loonam et al.’s (2021b) 

simulations showed that over- or underestimating movement rate biases density 

estimates. For example: a 50% underestimation of movement speed resulted in a 
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density estimate 40% lower than the true density; overestimating movement 

speed by 200% resulted in density estimates that were over 85% higher than 

actual (Loonam et al. 2021b). Taken together, these results suggest that the 

integrity of TTE estimates depends on the movement behaviour of the focal 

species, and obtaining accurate measures of animal movement speed. 

- The TTE model performs best when cameras are deployed randomly on the 

landscape. Setting cameras to maximize detections (i.e., targeted deployment) 

resulted in considerable over- or underestimates of density in walk simulations 

(Loonam et al. 2021b). Of the sampling designs tested in Grosklos’ (in 

preparation) simulations, random camera placement produced the best results. 

Thus, practitioners using the TTE model are advised to deploy their camera 

networks randomly to minimize model bias. 

- The TTE is robust to population openness and territoriality. Population openness 

is a violation of assumption 1 (population closure); territoriality is a violation of 

assumption 5 (animals are Poisson distributed across the landscape; Moeller et 

al. 2018). Neither appeared to impact TTE estimates – indicating that the model 

applies well to actual populations, which often violate these assumptions 

(Loonam et al. 2021b). 

It is worth noting that in all of Loonam et al.’s (2021b) simulations, the precision of TTE 

estimates was inflated – that is, estimates were calculated to be more precise than they 

actually were. Practitioners should keep this in mind when evaluating reported values of 

precision, as they may be artificially high. 

In the field: the TTE has produced density estimates similar to established censusing 

techniques. Moeller et al. (2018) piloted the TTE on a population of elk in Idaho, and 

found that the model produced a density estimate comparable to an aerial survey of the 

same area – even though cameras were not deployed randomly. In this system, the 

TTE produced higher estimates of population density than either of its sister models 

(space-to-event (STE) and instantaneous sampling (IS); see below). For cougars – a 

low-density species – TTE-based estimates were actually more precise than both 

genetic mark-recapture and random encounter model (REM; see 2.2.3 Random 
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Encounter Model) estimates, and similarly or more consistent across years, respectively 

(Loonam et al. 2021a). Density estimates could have been biased and misleadingly 

precise, however, because of non-random camera placement (Loonam et al. 2021a, 

Morin et al. 2022). 

The TTE has also performed poorly in natural populations. A study on snowshoe hare 

found that the TTE tended to overestimate density compared with the REM and the 

random encounter and staying time model (REST; see 2.2.4 Random Encounter and 

Staying Time; Jensen et al. 2022). Out of the three camera-based models, the TTE was 

also the least consistent with live-trapping spatial capture-recapture (SCR; see 2.1.2 

Spatial Capture-Recapture; Jensen et al. 2022). 
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Space-to-Event 

 

How the Model Works 

The space-to-event model (STE) is an extension of the time-to-event model (TTE; see 

above) that measures the area, instead of the time, sampled before an image of an 

animal is observed (Moeller et al. 2018). The conceptual underpinnings of the STE are 

the same as those of the TTE, with the exception that sampling occasions are collapsed 

into instantaneous samples using time-lapse images – photographs taken at 

predetermined periods of the day or night (e.g., every hour, every day at noon), 

regardless of whether animals 

are within frame (Figure 12; 

Granados 2021, Moeller et al. 

2018). Because they are 

collapsed into instants in time, 

there is no need to break 

sampling occasions down into 

sampling periods – and no need 

for measures of animal 

movement speed. The STE is 

therefore an alternative to the 

TTE that requires no additional 

non-camera data.  

Figure 12. One of many time-lapse images taken at a camera station at 

noon. Notice, the camera trap captures an image at a predetermined time 

(12:00), regardless of whether an animal is within frame. 
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The STE model is based on the simple logic that, as population density increases, the 

number of animal images captured by the cameras in a network increases, and thus the 

number of cameras that capture images increases – so, at a moment in time, the 

number of cameras from which images need to be “drawn” until an image of an animal 

is picked decreases (Lukacs 2021). To visualize how to model works: say an array of 

camera traps is deployed randomly across a study landscape, and set to take images 

every hour, on the hour (i.e., hourly sampling occasion). After image collection, for each 

occasion, images are “drawn” from cameras in random order, until an image of an 

animal is picked (Moeller et al. 2018). An example encounter history after 7 sampling 

occasions (e.g., 7 hours), for which the average viewshed area 𝑎 is 20 m2, might look 

like: {NA, 40 m2, NA, NA, 1180 m2, NA, 800 m2}, where 40 m2 indicates that images 

from 2 cameras had to be drawn before observing an animal, 1180 m2 indicates images 

from 59 cameras had to be drawn, and so on; and NA indicates no animal detections for 

that occasion. This encounter history – which summarizes the space until detections – 

can then be plugged into a modified TTE equation to produce a density estimate 

(Moeller et al. 2018). 

As with the TTE, the average area of a camera viewshed is calculated using the 

equation: 

𝑎 = 𝜋𝑟2
𝜃

360
 

where 𝑟 is detection distance and 𝜃 is the angle of the camera lens in degrees (Moeller 

et al. 2018). 𝑟 – instead of being the maximum distance at which an animal can trigger a 

camera’s motion sensor, however, as it is for the TTE – is simply the maximum distance 

at which an animal is identifiable, and is measured using landmarks as references 

(Gilbert et al. 2021, Moeller et al. 2018). 

Assumptions 

The STE model makes the same assumptions as the TTE model (see above). Note, 

however, that assumption 4 – perfect detection – is much more likely to be met when 
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using the STE, since the model uses time-lapse instead of motion-triggered images. 

When camera viewsheds are clear and open, animals will be detected with reasonable 

certainty using the time-lapse function (Moeller et al. 2018). 

Advantages and Limitations 

Advantages Limitations 

- The STE model does not require 

measurements of animal movement speed 

(Moeller et al. 2018). Instead, sampling 

occasions are collapsed into instants in time 

using camera traps’ time-lapse function. 

- The STE is not biased by animal movement 

speed (i.e., animals travelling slow vs fast). 

This contrasts with the TTE, which is sensitive 

to animal movement speed (i.e., more reliable 

when animals move quickly; Moeller et al. 

2018). 

- Like the TTE, the STE does not rely on counts 

of animals in images; practitioners need only 

record whether any animals were in the 

viewshed at each camera during a sampling 

occasion (Moeller et al. 2018). Thus, the 

model is unaffected by weather, travelling and 

investigative behaviour, obstructions, camera 

malfunctions and other factors that make 

accurately counting the number of individuals 

challenging (Moeller et al. 2018). 

- The STE uses time-lapse images. Unlike 

motion-triggered images, there is essentially 

no uncertainty in detection probability when 

using time-lapse images (Moeller et al. 2018).  

- As with the TTE, STE studies are simple to 

scale up or down. The number of cameras – 

and not camera density – determines the 

precision of estimates (Loonam et al. 2021a). 

100 cameras can be used to estimate density 

in a large area just as effectively as a small 

area (Loonam et al. 2021a). 

- The model does not apply well to very rare 

species, as detections of animals from 

randomly-placed cameras in time-lapse 

images can be too few to draw meaningful 

conclusions (Loonam et al. 2021b, Moeller et 

al. 2018). Population density must be 

sufficiently high to ensure an adequate number 

of animal detections – although deploying 

more cameras can also increase the number 

of detections (Loonam et al. 2021a, Moeller et 

al. 2018). 

- Because animal movement speed is not an 

input, the STE is less precise than the TTE 

(Loonam et al. 2021a, Moeller et al. 2018). 

- Depending on the time-lapse interval chosen, 

the STE can produce a lot of images (Morin et 

al. 2022). For example: Loonam et al. (2021a) 

captured time-lapse images every 5 minutes at 

about 70 cameras for two-to-three winters, 

resulting in hundreds of thousands of images. 

- Unlike the TTE, the STE cannot can account 

for spatial variation in density (Gilbert et al. 

2021). 

Simulations and Field Studies 

Random walk simulations show that the STE – unlike the TTE – is insensitive to 

movement speed (Moeller et al. 2018). This means that the model produces unbiased 

estimates of density, whether animals move slowly or quickly. 
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The STE has been field-tested on high-density ungulates and low-density carnivores in 

Idaho: 

- In Idaho, the STE produced an estimate of elk density comparable to an aerial 

survey and the TTE (Moeller et al. 2018). The precision of STE and TTE 

estimates was similar in this system. 

- For wolves – a low-density, social species – the STE yielded densities close to 

those from a parallel DNA mark-recapture study (Ausband et al. 2022). STE-

derived results were less precise, however. Density was also significantly 

overestimated during one survey period (before data transformation) because of 

high detection rates at a single camera (Ausband et al. 2022). The researchers 

recommended bootstrapping (i.e., resampling a data set with replacement) to 

correct estimates when a camera collects too few or too many images. 

- The model performed comparatively poorly for low-density, solitary cougars; STE 

estimates were less precise and more variable than those from genetic mark-

recapture and the random encounter model (REM; see 2.2.3 Random Encounter 

Model; Loonam et al. 2021a). Small sample sizes (i.e., few occasions with 

images of cougars) contributed to the STE’s inconsistency (Loonam et al, 

2021a). It is worth noting, however, that genetic mark-recapture-based estimates 

were also fairly inconsistent, and density was not calculable during some surveys 

due to a lack of recaptures, despite considerable field effort (Loonam et al. 

2021a). The STE may therefore still be an efficient alternative to DNA mark-

recapture. 

  



 

 

60 

Instantaneous Sampling  

 

How the Model Works 

The instantaneous sampling model (IS) is an extension of the space-to-event model 

(STE; see above) that uses counts of animals in time-lapse images – instead of the 

area until an animal is first detected – to estimate density (Moeller et al. 2018). As with 

the STE, all cameras in a randomly-deployed array are programmed to take time-lapse 

images at predefined intervals (e.g., every hour) to get instantaneous “snapshot” 

samples of the study area. During image processing, the number of animals in each 

photograph is recorded. Thus, the IS is essentially a series of fixed-area point counts 

(Moeller et al. 2018): camera traps act as “standing observers” tabulating the number of 

individuals seen within a set area and time. 

The IS equation is as follows: 

𝐷 =
1

𝐽𝑀
× ∑ ∑

𝑛𝑚𝑗

𝑎𝑚𝑗

𝑀

𝑚=1

𝐽

𝑗=1

 

where 𝐽 is the total number of sampling occasions, 𝑀 is the total number of camera 

stations, and 𝑛𝑚𝑗 is the count of animals in the viewshed and 𝑎𝑚𝑗 is the area of the 

viewshed at station 𝑚 on sampling occasion 𝑗 (Moeller et al. 2018). 
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Assumptions 

The first four assumptions of the time-to-event (TTE; see above) and STE models – 1) 

the study population is closed, 2) detections are independent, 3) cameras are deployed 

randomly on the landscape and 4) detection is perfect – also apply to the IS model. 

Unlike its sister models, however, the IS does not assume that animals are Poisson 

distributed across the landscape. Thus, the relative “clumpiness” (i.e., grouping) or 

“evenness” (i.e., territoriality) of animals does not impact the model’s performance, 

making the IS more flexible than the TTE and STE (Moeller et al. 2018). 

Advantages and Limitations 

Advantages Limitations 

- The IS model does not require measurements 

of animal movement speed, since sampling 

occasions are collapsed into moments in time 

(Moeller et al. 2018). 

- As with the STE – and in contrast to the TTE – 

the IS is not biased by animal movement 

speed (Moeller et al. 2018). It is similarly 

robust, whether animals move slowly or 

quickly. 

- Like the STE, the IS uses time-lapse images, 

for which there is essentially no uncertainty in 

detection probability (Moeller et al. 2018).  

- IS studies – like TTE and STE studies – are 

simple to scale up or down. The number of 

cameras, not camera density, determines the 

precision of estimates (Loonam et al. 2021a). 

100 cameras can be used to estimate density 

in a large area as effectively as in a small area 

(Loonam et al. 2021a). 

- The IS does not make assumptions about 

animal distribution. Both the TTE and the STE 

assume animals are Poisson-distributed 

across the study landscape; clumped or 

overly-dispersed spatial patterns violate this 

assumption. The IS does not assume animals 

are Poisson-distributed, so is more flexible 

than its sister models (Moeller et al. 2018). 

- The IS requires counts of animals. Accurately 

counting animals in camera trap photos can be 

challenging; weather, animal behaviour, 

obstructions and camera malfunctions – 

among other factors – can impact visibility and 

clarity, and thus image processors’ ability to 

effectively count individuals (Moeller et al. 

2018). 

- Because it relies on time-lapse images at 

randomly-placed cameras, from which 

detections can be sparse, the model does not 

apply well to very rare species (Loonam et al. 

2021b, Moeller et al. 2018). Practitioners can, 

however, deploy more cameras to bolster the 

number of detections (Loonam et al. 2021a, 

Moeller et al. 2018). 

- Setting cameras to take time-lapse images at 

frequent intervals (e.g., every 5 minutes) can 

produce an immense amount of data to 

process (Loonam et al. 2021a, Morin et al. 

2022). 

- The IS cannot account for spatial variation in 

density (Gilbert et al. 2021). 

- The IS is the least precise of its sister models 

(Moeller et al. 2018). 
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Simulations and Field Studies 

The IS is relatively untested opposite its sister models. Simulations have shown that the 

IS is unbiased to animal movement speed or population size, so is applicable to slow- 

and fast-moving animals and to low- and high-density populations (Moeller et al. 2018). 

When tested on a population of elk in Idaho, the IS produced a similar density estimate 

as an aerial survey, but which was less precise than both TTE- and STE-derived 

estimates (Moeller et al. 2018). 
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2.2.7 Site-Structured Models 

 

How the Models Work 

Site-structured models were initially developed for abundance estimation from human-

observer point count surveys, but can also be used to estimate density from camera 

trap studies. Unlike most other camera-based density models, which sample one 

population using many cameras, site-structured models treat each camera as though it 

samples its own distinct population within a larger meta-population (Burton, personal 

communication). And because 

the “population” of animals at 

each camera station moves 

beyond the sliver of area 

sampled in the camera 

viewshed, the total area each 

camera samples (i.e., its 

effective sampling area) is 

some larger area around the 

viewshed (Figure 13; Gilbert et 

al. 2021). Thus, site-structured 

models estimate density by 

measuring abundance at each 

Figure 13. The effective sampling area of a camera station extends beyond its 

viewshed to encompass the area used by the “population” it samples. Effective 

sampling area is thus a function of animal movement (and study duration; 

Gilbert et al. 2021). 
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camera trap, dividing these 

camera-specific 

abundances by each 

camera’s effective sampling 

area, and extrapolating 

estimates to the total study 

area (i.e., the sampling 

frame; Figure 14). 

Effectively, density is 

extrapolated twice: once 

from the level of the 

viewshed to the level of the 

effective sampling area, 

and once from the level of 

the effective sampling area 

to the level of the sampling frame. 

There are two classes of site-structured models: Royle-Nichols (RN) and N-mixture 

(NM) models. An RN model uses binary detection-nondetection data (i.e., 1s and 0s) to 

estimate site-specific density (Royle and Nichols 2003). An N-mixture (NM) model uses 

count data to estimate site-specific density (Royle 2004). 

Assumptions 

1) Population closure. A study population should not experience any births, deaths, 

immigration or emigration during the study period (Royle 2004, Royle and 

Nichols 2003). This assumption is critical for NM models. Practitioners must 

balance the need for population closure with study duration, as longer studies 

can improve estimates but are also more likely to violate assumption 1. 

2) Detections are independent. An animal detected during one survey occasion 

should not be any more or less likely to be detected during subsequent 

occasions (Gilbert et al. 2021).  

Figure 14. Comparative illustration of site-structured density models. On the left: 

camera-based models typically measure abundance 𝑁 using data from all cameras 

(grey crosses) in a network, and divide 𝑁 by the area of the sampling frame 𝐴 to obtain 

a density estimate. On the right: site-structured models estimate density for every 

camera station, using site-specific abundance and effective sampling area. These 

density estimates are then extrapolated to the entire sampling frame. The subscript 𝑖 

refers to camera location 𝑖. 
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3) The effective sampling area of each camera is discrete. Camera stations should 

therefore be spaced far enough apart that effective sampling areas do not 

overlap, so animals are not detected at more than one camera station (Gilbert et 

al. 2021). 

4) All animals are equally likely to be detected. Detection probability should not be 

biased towards certain individuals or demographics. 

5) Individuals are not misidentified or miscounted. In other words: repeat detections 

of one individual are not misinterpreted as singular detections of many different 

individuals (Nakashima 2020). Such errors are sometimes called “false 

positives,” and can inflate population size (and therefore density; Gilbert et al. 

2021, Nakashima 2020). Both the RN and the NM appear to be robust to 

violations of this assumption (Nakashima 2020).  

Advantages and Limitations 

Advantages Limitations 

- Site-structured models rely on independent 

animal detections. Camera stations must be 

spaced far apart (i.e., more than one home 

range distance from each other) – so large 

areas can be sampled using relatively few 

cameras. 

- Unlike many other unmarked density models, 

site-structured models allow for non-random 

camera placement. Cameras can be targeted 

(e.g., set on trails/roads) and even baited 

(Gilbert et al. 2021). 

- Site-structured models can be used to 

estimate density at very large spatial scales, 

so are well-suited to species with large ranges 

(Morin et al. 2022). 

- Habitat characteristics that influence spatial 

variation in density can be estimated directly in 

site-structured models (Royle 2004, Royle and 

Nichols 2003). 

- RN models are well-suited to low-density 

populations, like rare and territorial 

carnovivores (Furnas et al. 2017, Royle and 

Dorazio 2008). 

- Area is determined ad hoc (i.e., not measured 

explicitly) at two spatial scales. At the camera 

trap level: the effective sampling area is 

unknown. Effective sampling area is a function 

of animal movement and survey length (Figure 

13; Gilbert et al. 2021); because animal 

movement is not measured, detections-

nondetections (RN) or counts (NM) at a 

camera are assumed to represent some vague 

area several m2 or km2 around the camera. 

Some studies incorporate measures of 

average home range size (obtained via 

telemetry) to better estimate effective sampling 

area. At the study level: the total area sampled 

by the camera network is never explicitly 

measured, rendering site-structured density 

estimates fairly arbitrary. 

- Because abundance is estimated per camera 

station, animals cannot be detected at more 

than one camera in an array. Overlapping 

detections result in overestimates of density 

(Suwanrat et al. 2015). 

- Site-structured models are sensitive to 

assumption violations and, when their 

assumptions are not met, are best viewed as 



 

 

66 

indices of density (see 2.2.8 Indices of 

Density; Gilbert et al. 2021). 

- Site-structured models may not be appropriate 

for medium-to-large mammals at small spatial 

scales (Morin et al. 2022). 

- RN is not suitable for moderate- to high-

density populations. At high densities, animals 

are likely to be captured at many camera 

stations, rendering detection-nondetection 

data difficult to interpret (i.e., too many 1s to 

draw meaningful conclusions; Gilbert et al. 

2021). 

- NM models should not be used to estimate 

absolute density unless the assumption of 

population closure can be met (Morin et al. 

2022, Royle 2004). 

- NM is only appropriate for solitary, territorial 

species (Morin et al. 2022). 

Simulations and Field Studies 

Camera-based site-structured models have not been extensively tested on medium-to-

large mammals. There are, however, some examples of camera trap RN and NM for 

bird and small mammal density estimation: 

- Camera trap RN and NM were found to produce density estimates comparable to 

spot-mapping – a well-established methods of measuring bird density – for 

ground-dwelling fowl. RN- and NM-derived density estimates were more accurate 

and precise than line-transect distance sampling (DS; see 2.2.2 Distance 

Sampling; Suwanrat et al. 2015). Effective sampling area was estimated using 

data from a simultaneous telemetry study, and defined as the circular area 

around a camera trap with radius equal to the diameter of an average home 

range (Suwanrat et al. 2015). 

- For fisher in the northwestern United States, the RN model yielded density 

estimates similar to independent estimates using other techniques (Furnas et al. 

2017). The researchers estimated effective sampling area by pooling home range 

size estimates from telemetry and trapping studies previously carried out in their 

focal area, modelling how home range size changed with sex and distance 
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inland, and considering home range size for the research period (autumn; Furnas 

et al. 2017).  
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2.3 Partially Marked Populations 

2.3.1 Spatial Mark-Resight 

 

How the Model Works 

We have already discussed spatially-explicit density models for completely marked 

populations (spatial capture-recapture, SCR; see 2.1.2 Spatial Capture-Recapture) and 

completely unmarked populations (spatial count, SC; see 2.2.1 Spatial Count) – but 

what about the “intermediate” situation, in which only a fraction of a population carries 

marks? Spatial mark-resight (SMR) models were developed for such scenarios. 

First, let’s familiarize ourselves with non-spatial mark-resight models (or simply mark-

resight models). Mark-resight models are similar to capture-recapture (CR; see 2.1.1 

Capture-Recapture) models, but relax CR’s stipulation that all animals in a study 

population are individually identifiable – that is, that all animals carry unique natural 

marks, or that all animals are trapped and tagged (Royle et al. 2014, Sollmann et al. 

2013a). Instead, mark-resight models need only a subset of the population to be 

marked (either naturally or from a single trapping-and-tagging event; Sollmann et al. 

2013a). The entire population is then resighted using a “non-invasive” survey technique 

(i.e., a method that does not require the handling of animals, like an aerial or camera 

trap survey; Royle et al. 2014, Sollmann et al. 2013a) and population size is calculated 

using the equation: 
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𝑁 = 𝑚 +
𝑢

𝑝
 

where 𝑚 is the number of marked animals, 𝑢 is the number of unmarked animals and 𝑝 

is detection probability – the latter of which is determined using data from marked 

individuals only (Chandler and Royle 2013). Dividing 𝑁 by the area of the sampling 

frame 𝐴 produces an estimate of total population density. 

SMR models integrate spatial information into the mark-resight framework. The result is 

a hybrid model that combines data from the detection histories of marked individuals, as 

per SCR, with site-specific counts of unmarked individuals, as per SC (Royle et al. 

2014). For the remainder of this section, we will discuss camera trap SMR, for which 

animals are resighted using camera trap arrays. 

The first SMR model, developed by Chandler and Royle (2013) and Sollmann et al. 

(2013a) and now coined “conventional SMR,” models the resighting process only (i.e., 

ignores the marking process; Whittington et al. 2018). In doing so, conventional SMR 

makes the implicit assumption that marked animals are a random subset of the study 

population, and thus that 1) marked and unmarked animals are distributed similarly 

across the landscape, and 2) marked and unmarked animals have equal detection 

probabilities (Royle et al. 2014, Whittington et al. 2018). Such assumptions can hold – 

for example, when a random subset of the population carries natural marks, or when a 

closed population of animals is trapped and tagged at random locations (Sollmann et al. 

2013a, Rich et al. 2014, Whittington et al. 2018). These assumptions are violated, 

however, when animals are trapped and tagged non-randomly (e.g., owing to 

inaccessibility, rough terrain) before resighting, since the distribution of marked animals 

will be clustered around trapping-and-tagging sites, and marked animals will have a 

higher chance of being detected at camera traps near where they were tagged 

(Whittington et al. 2018). 

To ease the assumptions and address the limitations of conventional SMR, Whittington 

et al. (2018) developed generalized SMR, which models the marking and resighting 
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processes separately. The marking sub-model describes where animals were trapped 

and tagged on the study landscape – that is, how marked individuals are distributed in 

space (Jiménez et al. 2019). Explicitly modelling the marking process allows 

practitioners to trap and tag animals non-randomly (e.g., using linear or grid trap 

layouts) without biasing density estimates (Whittington et al. 2018). The resighting sub-

model combines marked individuals’ detection histories, camera trap-specific counts of 

unmarked individuals and estimates of detection probability to determine population 

density (Whittington et al. 2018). 

Practitioners should note that the number of marked animals in a population can 

influence the precision of SMR studies. The general trend in precision, based on 

previous SMR studies (both conventional and generalized), is: the more marked 

animals, the more precise the density estimation (see Whittington et al. 2018). Of the 

four studies compared, only those with 22 or more marked individuals achieved 

coefficients of variation (CVs) below the accepted threshold for wildlife management 

(i.e., CV ≤ 0.2; Sollmann et al. 2013a, Whittington et al. 2018, Williams et al. 2002). 

Assumptions 

SMR makes the same assumptions as SCR and SC, plus the following assumptions: 

1) No loss or misidentification of unique marks. The former means that marked 

animals do not “become” unmarked part-way through a study, and thus 

erroneously lumped in with the unmarked subset of the population. The latter 

means that animals are correctly identified as either marked or unmarked, and 

that, for marked individuals, the correct identities are assigned to the correct 

individual (or they are placed in a separate category, marked but not identifiable; 

Royle et al. 2014, Sollmann et al. 2013a). 

2) Failure to identify marked individuals is random. More specifically, failure to 

identify marked animals is not linked to any particular demographic or spatial 

location (Royle et al. 2014).   
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3) Marked animals are a random subset of the population. For conventional SMR: 

marked animals should represent both the demographic composition and the 

spatial distribution of the larger population (Royle et al. 2014). This assumption is 

violated when certain groups of animals are more likely to be marked (e.g., only 

males are trapped and tagged), or when marked animals are clustered in 

particular areas or habitat types (e.g., animals are trapped and tagged only at the 

centre of the sampling frame; Royle et al. 2014). To avoid the latter, practitioners 

can trap and mark animals uniformly across the state space, or implement 

generalized SMR (Whittington et al. 2018). 

Advantages and Limitations 

Advantages Limitations 

- SMR “bridges the gap” between SCR and SC: 

it relaxes SCR’s requirement that all 

individuals are marked and uniquely 

identifiable, but is more precise than SC (Morin 

et al. 2022). 

- SMR studies can capitalize on pre-existing 

tagging or collaring projects, thereby extracting 

as much information as possible from invasive 

physical-trapping methodologies (Fennell, 

personal communication). 

- An extension of generalized SMR allows 

images of unmarked, marked and marked-but-

unidentifiable individuals to be included in 

density estimates (Jiménez et al. 2019). 

- SMR performs poorly when resightings are few 

– either because too few animals are marked, 

or cameras are spaced too far apart (Sollmann 

et al. 2013a). The number of resightings 

should be about double the size of the 

population (Arnason et al. 1991). 

- Because SMR is an SCR-SC hybrid, it, like 

SCR and SC, is difficult to scale up. Each 

animal must be detected at multiple camera 

stations, which requires high camera density 

(Ausband et al. 2022, Chandler and Royle 

2013, Loonam et al. 2021). 

Simulations and Field Experiments 

Kane et al. (2015) used conventional SMR to estimate lion density in Senegal, and 

found that – even with relatively few camera traps – SMR-derived density estimates 

were more precise than previous track survey- and expert opinion-derived estimates 

(Henschel et al. 2014). Nine lions were identified using natural features, such as scars, 

missing tail tips and the condition of the mane (Kane et al. 2015). 

SMR models have also been tested in western Canada. In southern BC: generalized 

SMR produced higher, more precise estimates of mountain goat density than camera 
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trap SCR (Fennell 2022). Across three years, SMR estimates had a mean CV of 0.20, 

while SCR estimates had a mean CV of 0.40 and never dipped below 0.20 (Fennell 

2022). In this system, 12 goats were marked (Fennell 2022). In Banff National Park: 

generalized SMR and genetic SCR produced comparable estimates of grizzly bear 

density, while conventional SMR underestimated density compared to genetic SCR 

(Whittington et al. 2018). In this system, generalized SMR produced accurate estimates 

of grizzly bear density, even though marked bears were clustered in certain parts of the 

landscape (Whittington et al. 2018). 22 bears were marked and individually identifiable 

(10 females, 12 males). 

As a complement to the grizzly bear field study, Whittington et al. (2018) also performed 

simulations to test the effects of linear, grid and random marking trap configurations. 

They found that, regardless of trap design, generalized SMR yielded unbiased 

estimates of density. Conventional SMR, on the other hand, yielded biased estimates 

when traps were non-randomly dispersed.  
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2.3.2 Spatial Partial Identity Model 

Two-Flank Spatial Partial Identity Model 

 

How the Model Works 

The two-flank spatial partial identity model (2-flank SPIM) is an extension of camera trap 

spatial capture-recapture (SCR; see 2.1.2 Spatial Capture-Recapture). Camera trap 

SCR uses images of uniquely-identifiable animals to infer the number of activity (or 

home range) centres in a population, and the area bounding these activity centres – or 

population size 𝑁 and sampling frame 𝐴, respectively (see How the Model Works in the 

SCR section). Oftentimes, individual identities are linked to animals using a paired 

camera sampling design: two cameras are deployed per station, facing each other, to 

capture the left and right flanks of a passing animal simultaneously. This design ensures 

that a single identity is linked to both sides of an individual (i.e., an individual’s identity is 

completely resolved; Augustine et al. 2018). Single-sided captures (e.g., due to 

unpaired sampling design, camera failure, unclear images, obstructions) cannot be 

used to resolve an individual’s identity with certainty, as separate identities can be 

erroneously assigned to the left and right sides of the same animal. Single-sided images 

are therefore partially-identifying, and are often excluded from analyses, resulting in loss 

of data and compromised density estimates (Augustine et al. 2018). 
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The 2-flank SPIM draws on the locations of partially-identifying images captures to 

probabilistically resolve animals’ complete identities (Augustine et al. 2018). Partially-

identifying captures that are many home ranges apart, for example, are not likely to 

belong to the same individual; left-and-right flank images captured at the same camera 

station in quick succession, on the other hand, are likely to belong to the same 

individual (Augustine et al. 2018). Thus, the 2-flank SPIM is essentially an SCR model 

augmented with data from partially-identifying images (i.e., “SCR+”). 

Assumptions 

The 2-flank SPIM makes the same assumptions as SCR, but also assumes that left-

only, right-only and both-side image capture processes are independent (Augustine et 

al. 2018). This assumption allows us to model detection probability per outcome – that 

is, for both-side, right-side and left-side captures – instead of modelling the detection 

probability for each camera in a pair (since a pair of cameras is meant to trigger at the 

same time, so detection probability should be the same for both; Augustine et al. 2018). 

Advantages and Limitations 

Advantages Limitations 

- Partial identification is a common issue with 

camera trap SCR (Davis et al. 2021). The 2-

flank SPIM can resolve individuals’ complete 

identities from partially-identifying images, and 

can thus improve the precision of density 

estimates (Davis et al. 2021). 

- The 2-flank SPIM can be applied to camera 

trap surveys of various designs: paired-camera 

stations, single-camera stations, and hybrid 

configurations with both paired- and single-

camera stations (Augustine et al. 2018, Davis 

et al. 2021). 

- Because it can be used with single-camera 

and hybrid sampling designs, the 2-flank SPIM 

can be implemented with fewer cameras than 

standard camera trap SCR (Davis et al. 2021). 

Alternatively, more area can be covered using 

the same number of cameras (Davis et al. 

2021). 

- 2-flank SPIM analyses can be computationally 

demanding (Augustine et al. 2018). 

- Increases in precision will be most pronounced 

in low-density populations (Augustine et al. 

2018, Davis et al. 2021). 
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Simulations and Field Studies 

Simulations show that the 2-flank SPIM improves density estimates – especially when 

populations are small and few individuals can be completely identified (Augustine et al. 

2018). Moreover, the 2-flank SPIM performed better when camera stations were 

regularly spaced and deployed close to one another relative to animals’ home range 

sizes (Augustine et al. 2018). 

In the field: Augustine et al. (2018) found that the 2-flank SPIM improved inference (i.e., 

accuracy and precision of estimates) for both a paired-camera survey of ocelots and a 

single-camera survey of bobcats. The 2-flank SPIM also produced estimates of leopard 

and spotted hyaena density that were more precise than SCR (Davis et al. 2021). 
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Categorical Spatial Partial Identity Model 

 

How the Model Works 

The categorical spatial partial identity model (catSPIM) is an extension of the spatial 

count (SC; see 2.2.1 Spatial Count) model. It was originally developed for use with 

genetic capture-recapture studies, but can also be applied to camera trap studies 

(Augustine et al. 2019). Here, we will discuss the camera trap catSPIM. 

Camera trap SC uses the number and location of unmarked animal detections to infer 

the number and location of activity (or home range) centres, which can then be used to 

infer population density (see How the Model Works in the SC section). With SC, 

individual identities are not known and cannot be resolved with any certainty. The 

catSPIM incorporates categorical information (i.e., information that can be divided into 

distinct groups) into the SC model to partially-resolve unmarked animals’ identities. Said 

differently: instead of viewing animals as completely unidentifiable and relying 

exclusively on model parameters to tease individuals apart, as SC does, the catSPIM 

uses model parameters and suites of traits to help distinguish animals – even if 

incompletely (Sun et al. 2022). Thus, catSPIM can be thought of as “SC+”: an SC model 

augmented with categorical identifiers. 

Examples of categorical identifiers include sex, age class, colour type, markings and 

antler point count (Augustine et al. 2019, Sun et al. 2022). Each categorical identifier 
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(e.g., sex) has a fixed number of possibilities (e.g., male/female). Every animal 

detection is assigned a “full categorical identity,” or a set of traits given all categorical 

identifiers and possibilities (Augustine et al. 2019). 

Categorical identifiers are used to partially-distinguish unmarked animals in three ways: 

1) Deterministic identity exclusion. This means that animals that differ in one or 

more categories cannot be the same individual (Augustine et al. 2019). This 

makes intuitive sense: an adult, female, brown animal cannot be the same 

individual as an adult, female, black animal, for example. 

2) Categorical probabilistic identity association. This means that animals that share 

categorical identifiers are more likely to be the same individual (Augustine et al. 

2019). The catSPIM’s power to resolve individuals’ identities increases with the 

number of categorical identifiers in a full categorical identity and the number of 

possibilities per categorical identifier, since individuals become increasingly 

unique (Sun et al. 2022). 

3) Spatial probabilistic identity association. The spatial pattern of detections and the 

size of animals’ home ranges limit which detections can be assigned to the same 

individuals (Augustine et al. 2019). As a simple example: an adult, female, 

collared elk is detected at two camera traps, many home ranges apart. We can 

deduce that the elk captured at one camera is not likely to be the same as the elk 

captured at the other camera, since it is improbable an individual elk would travel 

that far. 

Assumptions 

The catSPIM makes the same assumptions as SC, plus one additional assumption: that 

each individual has a full categorical identity (Augustine et al. 2019). The model likewise 

assumes that we know every possibility for every categorical identifier, and that 

possibilities occur with predictable probabilities (Augustine et al. 2019, Sun et al. 2022). 

These assumptions allow us to assign identities to animal detections. 
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Advantages and Limitations 

Advantages Limitations 

- The catSPIM has the potential to produce 

density estimates that are nearly as precise as 

SCR, with less information (Augustine et al. 

2019). 

- The catSPIM is sensitive to group-travelling 

behaviour – a violation of the assumption of 

detection independence (Sun et al. 2022).  

(Sun et al. 2022). The model may be most 

appropriate for solitary species (Sun et al 

2022). 

- To properly identify and link detections to 

individuals: practitioners must use enough 

categorical identifiers with enough possibilities 

(Sun et al. 2022). Too few 

identifiers/possibilities can lead to identity 

misassignments and overestimations of 

population density (Sun et al. 2022). 

- The catSPIM may work best for low-density 

populations (Agustine et al. 2019, Sun et al. 

2022). 

Simulations and Field Studies 

Sun et al. (2022) tested the catSPIM on two caribou populations in the Alberta oil sands 

region. They found that, compared to SC, the catSPIM was more precise and consistent 

year-to-year – but that it was still fairly imprecise. The catSPIM may also have produced 

overestimates of density in this system. Any overestimates would likely have been 

caused by misassigning identities (more specifically, by assigning identities to 

individuals that didn’t exist – that is, individuals that were in the augmented population 

𝑀 but not the actual population 𝑁; see How the Model Works in the SC section) and 

could be mitigated by increasing the number of categorical identifiers used (Sun et al. 

2022). The researchers used three categorical identifiers for this study: sex 

(male/female), presence of collars (collared/not collared) and antler point count (0 to 

17), which they suggest is too few (Sun et al. 2022). 

Field data-based simulations showed that the catSPIM was less biased and more 

precise than SC (Sun et al. 2022). 
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Box 2. Note the distinction between SPIMs and spatial mark-resight (SMR; see 2.3.1 Spatial Mark-Resight) models: SPIMs are 

for partially-identifying sets of images (two-flank SPIMs) or individuals that are themselves partially-marked, whereas SMR deals 

with partially-marked populations in which some animals are uniquely marked and identifiable and others are unmarked and 

unidentifiable. 
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2.4 Indices of Density 

An index is a value that is assumed to be related to a measure of interest (Thompson et 

al. 1998). For example: unemployment levels are used an index of economic state 

(Cambridge Dictionary 2022); an unemployment rate of 20% might signal a poorer 

economy than an unemployment rate of 5%. In wildlife ecology, practitioners may 

choose to measure indices of density if estimates of absolute density are not needed – 

for example, if the focus of a study is on relative differences across space (e.g., 

habitats, parks), time or species – or if density estimation study is not feasible (O’Brien 

2011, Sollmann et al. 2013b).  

Note: in the sections below, we will mainly refer to abundance – and not density – as 

the indices discussed are used to make inferences about abundance. Such measures 

can be converted to density by dividing by the area of the sampling frame. As with many 

of the models mentioned in this review, however, the sampling frame is often arbitrarily 

defined. 

2.4.1 Relative Abundance 

In ecology, relative abundance (RA) is any count of animals or animal sign (e.g., 

number of deer sighted, number of bird vocalizations per unit time, number of moose 

tracks per kilometer of transect) that is assumed to correlate with absolute abundance 

(O’Brien 2011). RA is a controversial index for two reasons: 1) there is often no 

documented relationship between the number of animals or signs observed and 

population size (i.e., index validation), and 2) detection probability is assumed to be 

constant between the areas, times or species being compared (O’Brien 2011, 

Thompson et al. 1998). 

To the first point: the relationship between the number of animals or signs and 

abundance is rarely established (Burton et al. 2015). Researchers often assume that 

counts and population size scale linearly – but many other kinds of relationships are 

possible. When the assumed relationship between counts and abundance diverges 

from the actual relationship, inferences from RA are not very meaningful (Thompson et 
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al. 1998). Validating a count-abundance relationship requires comparison with a robust, 

accurate estimate of absolute density (e.g., Krebs et al. 1987, Rovero and Marshall 

2009, Villette et al. 2016). 

To the second point: consider the canonical equation, 

𝑁 =
𝐶

𝑝
 

where 𝑁 is population size, 𝐶 is the count of animals or signs and 𝑝 is detection 

probability (Anderson 2001, Brennan 2019). This equation underlies many estimators of 

abundance, including capture-recapture (CR; see 2.1.1 Capture-Recapture) and 

distance sampling (DS; see 2.2.2 Distance Sampling) methods (O’Brien 2011). RA 

comparisons assume that detection probability 𝑝 is constant across space, time or 

species, and can therefore be ignored (Anderson 2001, O’Brien 2011, Sollmann et al. 

2013b), such that: 

𝑁 ≅ 𝐶 

so count essentially becomes a surrogate for population size. 

Assuming constant detection probability 𝑝 is problematic, since the likelihood an animal 

or sign is counted during a survey will vary with observational, environmental, and 

habitat- and species-specific factors, which in turn can vary with time (Anderson 2001). 

For example: at site A, animals may be difficult to spot in dense vegetation, while at site 

B, animals may be easy to spot in open grassland; and the effects of vegetation on 

observability may differ seasonally. If the effects of vegetation on detectability are not 

accounted for, how can we be sure that differences in animal counts at site A and B are 

due to true differences in abundance, and not simply artefacts of detection bias 

(Sollmann et al. 2013b)? 

In a camera trapping context, RA is the comparison of detection rates across space, 

time or species – where detection rates are typically reported as the number of images 

per 100 trap days, but can also be reported in terms of the total number of detections, 
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other units of effort (e.g., camera trap hours), proportion of stations with detections, etc. 

(Burton et al. 2015). As with other kinds of RA surveys, comparisons of camera trap 

detection rates can confound abundance with animal behaviour and observability 

(Anderson 2001, Burton et al. 2015). 

RA has been criticized as an abundance estimator. Anderson (2001) condemned the 

index as “unprofessional,” while O’Brien (2011) called it a “metric of last resort.” 

Sollmann et al. (2013b) used simulations to determine that camera trap RA analyses did 

not detect changes in big cat density, and called use of the index for wildlife 

management “alarming.” Nevertheless, some researchers have had success with the 

method and/or have argued for its conceptual and practical advantages (e.g., Carbone 

et al. 2001, Johnson 2008, Palmer et al. 2018, Rovero and Marshall 2009). Broadley et 

al. (2019) used simulations to show that RA could be sensitive to density-dependent 

movement, but generally tracked abundance well. Banks-Leite (2014) emphasized the 

importance of careful sampling design and protocols to control for variation in 

detectability, arguing that researchers should not solely rely on statistical corrections. 

Ultimately, there is no “silver bullet” and researchers must carefully consider their 

inferential objectives and potential sources of sampling and estimation bias when 

choosing response variables and modelling frameworks for camera trap data. 

2.4.2 Occupancy 

Occupancy models describe spatial patterns of animal occurrence (Sollmann 2018) and 

have been proposed as a proxy for abundance (Noon et al. 2012). They ask: what 

proportion of a study area is inhabited by a population – that is, at how many camera 

sites do one or more individuals of a species occur (MacKenzie et al. 2017)? The basic 

equation for occupancy is: 

𝜓 =
�̂�

𝑠
 

where 𝜓 is the probability a site is occupied, �̂� is the estimated number of occupied sites 

(i.e., the count of sites where animals were detected, corrected for detection probability) 
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and 𝑠 is the total number of sites surveyed (MacKenzie et al. 2017). Unlike simple 

measures of presence-absence, occupancy models account for imperfect detection 

(Sollmann 2018). They attempt to differentiate between absence – animals truly not 

present – and nondetection – animals present but not detected – by repeatedly 

sampling sites over time. The central assumption of basic occupancy models is that 

repeated samples occur during a period in which the site is closed to changes in 

occupancy (i.e., occupancy status – present or absent – does not change during the 

sampling period). Thus if a species is detected during one of three sampling occasions, 

it is assumed that it was present during all three occasions but undetected during two. 

In theory, occupancy and abundance share a predictable relationship. As population 

size increases, the number of sites occupied by members of that population should also 

increase (until all sites are occupied); likewise, a decrease in population size should 

lead to a decrease in the number of sites used (Gaston et al. 2000, Royle and Dorazio 

2008). This is called an occupancy-abundance relationship, and – because of it – 

occupancy can be used as an index of abundance. 

Advantages of occupancy as an index of abundance include: 

- Occupancy studies may be easier to implement than some abundance or density 

estimators (Noon et al. 2012, Sollmann 2018). 

- Occupancy-abundance relationships appear to be robust to territoriality, group-

travelling behaviour and other biological traits (Steenweg et al. 2018). 

- Occupancy can be modelled as a function of site- and sampling-specific 

covariates to better understand which factors predict animal occurrence 

(Sollmann 2018). 

However, many researchers have cautioned against the use occupancy as an index. As 

with relative abundance (RA; see above), there is no consistent, long-term relationship 

between occupancy and abundance (Efford and Dawson 2012). Occupancy can change 

with abundance, but also with survey duration, species home range size, animal 

movement, etc., muddling occupancy-abundance relationships and thus inferences 
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about population size (Neilson et al. 2018, Steenweg et al. 2018). While occupancy is a 

powerful stand-alone metric, Sollmann (2018) says it should not be “misinterpreted” as 

an index of abundance. 

Despite its widespread use, occupancy may be particularly problematic for camera trap 

studies due to the violation of the closure assumption. Burton et al (2015) highlighted 

that many camera trap studies using occupancy do not explicitly define the “site,” 

although is often implicitly given as some larger area around a camera trap. Since 

camera trap studies typically target mammal species with relatively large home ranges, 

the site closure assumption is almost certainly violated in most cases. Many camera 

trappers therefore assume that “occupancy” is in fact “use” of a site (i.e., the site is not 

closed), and that detection probability also includes availability for detection. Mackenzie 

et al. (2017) suggested that estimates should be unbiased if movements in and out of a 

site are random, but this assumption is rarely tested. And where occupancy estimates 

have been tested using realistic mammal movements, they have generally performed 

poorly (Neilson et al 2018, Stewart et al. 2018).  
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3. Recommendations and Decision-Making Tools 

3.1 Recommendations  

Camera traps are a viable tool to collect detection data that can be fit to density models.  

Given the novelty of many camera trap density estimation models and the uncertainties 

(in sampling design, consistency, applicability, etc.) that remain, it is not possible to 

recommend one estimation model over another. Many models have yet to be rigorously 

and repeatedly validated; the effects of assumption violations and sampling design 

(e.g., trap configuration, trap spacing, number of cameras, study duration) on density 

estimates are not well understood for all models; and many models have yet to be 

extensively tested in landscapes and on species characteristic of BC (Gilbert et al. 

2021, Jensen et al. 2022). Future work will need to address these knowledge gaps to 

provide practitioners with clearer guidelines. We do therefore recommend additional 

investment in field and simulation tests of camera trap density estimation models. 

When practitioners choose to estimate population density with camera traps, they 

should start by asking themselves:  

1) Are density estimates needed? Can project goals be achieved by measuring 

other, less-intensive metrics (e.g., relative abundance, occupancy)? Does the 

absolute number of individuals need to be known? Can variation in detection 

probability be reasonably well controlled by sampling design and protocol? 

2) Are camera traps the most appropriate tool/technique for density estimation? 

Consider the study species, landscape and goals: 

a) are animals rare or common? 

b) how accessible is the study area? 

c) how big is the study area? 

d) are very precise estimates needed? 

e) etc.? 
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3) Do the potential outcomes of camera trap data-based density estimation justify 

the cost and effort of implementation? 

If the answer to all questions is “yes,” practitioners can select the model(s) best-suited 

to their particular study using the decision-making tools below (Figure 15 and Table 1) 

and by reading over the appropriate model overview sections and looking into key 

references.  

While we do not recommend replacing existing monitoring and inventorying programs 

with camera trap density studies outright, we have identified several situations in which 

camera trap density estimation could be useful: 

1) Camera surveys can complement infrequent inventories using other methods. 

Take, for example, the years-long gaps between aerial surveys in some wildlife 

management units (WMUs): camera arrays deployed in such WMUs could help 

fill temporal gaps in aerial survey data, improving the quality of inferences made 

from sporadic flights. Cameras could also be used to guide aerial survey 

priorities: management units with camera-derived densities falling below a certain 

threshold would be moved to the top of the list for the following year’s aerial 

surveys (“two-stage adaptive management”; Becker et al. 2019, Conroy et al. 

2008, Morin et al. 2022). 

2) Camera surveys can provide density estimates for species which cannot be 

inventoried practically or reliably by other means. Cameras can provide baseline 

density data for rare and elusive carnivores, for example (Green et al. 2020). 

They may also be useful for censusing species like coastal black-tailed deer 

(look for report out of South Coast), which occupy densely forested habitats and 

thus cannot be surveyed from the air (BC Ministry of Sustainable Resource 

Management 2002). 

3) Camera traps can also be used to estimate the densities of multiple species 

simultaneously (Burgar et al. 2019). 

4) Camera-based density data can contribute valuable information to integrated 

population models – especially for areas or species with little data (Vander 
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Vennen, personal communication). Even imprecise estimates can be usefully 

incorporated. 

Regardless of the extent of surveys or the analytical methods used, practitioners 

implementing camera trap density models should conduct simulations and power 

analyses. Before deployment: simulations and power analyses can help practitioners 

decide whether their planned study designs and sampling efforts are appropriate (Green 

et al. 2020, Morin et al. 2022). After data collection: simulations derived from field data 

can help us asses the robustness of our empirical studies and understand what might 

be limiting our ability to accurately and precisely estimate density (e.g., study duration, 

number of cameras, choice of density model, etc.; Burgar, personal communication). 

Simulations and power analyses should become standard practice. 

When reporting results, practitioners should also specify what study design they chose 

and why, what assumptions were made, and the precision of estimates (Burton et al. 

2015). 
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3.2 Decision-Making Tools 
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Table 2. Quick-reference summary table of sampling design and population requirements, as well as available R 

packages/code, for camera trap density estimation models. Three dashes (---) signify that field is not applicable for the model. 
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4. Conclusion 

Camera traps can be used to estimate the densities of marked, unmarked and partially-

marked animal populations, with 17+ different models to choose from. This report 

provides examples of density estimators fit to camera detection data that perform well 

(i.e., accurately, precisely, consistently, as well or better than traditional density 

estimation methods, such as minimum count aerial surveys and genetic mark-recapture. 

This is consistent with other research that found ground-based surveys had less 

observation error than aerial-based surveys (Ahrestani et al, 2013). We have also 

shown that camera-based density estimation remains challenging. Every model 

discussed in this review has important advantages and limitations and makes critical 

assumptions; no method constitutes a “silver bullet.” 

Critics may point to the labour-intensiveness and cost of camera trap-based density 

estimation. We do not disagree – estimating density using camera traps can be a 

logistically-challenging, time-consuming and expensive endeavour. Camera trap 

surveys will not be feasible or efficient in certain landscapes (e.g., very rugged or 

inaccessible areas), and have significant field and image-processing requirements. 

Reliable camera trap models can cost over $500 CAD per unit (in 2022), limiting the 

number of cameras that can be deployed in an array and, therefore, spatial extent and 

statistical inference. In other scenarios, camera trap density estimation can be very 

effective and economical, however. In contrast to BC’s standard inventorying methods 

(see 1.2 Provincial Standards for Density Estimation), which all produce single-species 

density estimates, camera traps can generate density estimates for multiple species 

simultaneously (Burgar et al. 2019) – reducing the number of independent surveys that 

must be conducted, and thus overall cost. As camera traps detect multiple species over 

a longer time period than standard inventory methods, they also provide value-added 

information for multiple species that can be used to inform species knowledge (e.g., 

seasonal distribution patterns, daily activity patterns, habitat use, health, reproductive 

condition, etc.). Moreover, a cost comparison found that camera trap surveys cost as 

much or less than yearly aerial surveys (see Appendix A). 
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Critics may also point to the imprecision of camera trap-based density estimation. 

Unmarked models tend to suffer from imprecision without about 60+ camera stations or 

the inclusion of secondary data (e.g., telemetry data; Morin et al. 2022, Twining et al. 

2021). Concern over precision is warranted: imprecise density estimates can lead to 

ineffectual or poor management decisions, or, in extreme cases, put populations at risk 

(Jiménez et al. 2017). But BC’s standard density estimation methods are not 

necessarily more precise than camera-based models. Indeed, many do not account for 

detection probability and/or do not provide measures of precision (e.g., minimum count) 

– leaving practitioners to subjectively determine whether estimates are biased, accurate 

or precise. 

We have devoted much of this review to the discussion of model assumptions and the 

effects of violating them. To produce meaningful density estimates, it is critical to 

understand the assumptions a model makes, how well a given population and study 

design might satisfy them, and what happens when they are violated. While assumption 

breaches should be minimized, it is also important to accept that wildlife populations will 

almost never meet every model assumption. Violations can, however, be 

acknowledged, measured and corrected for (Becker et al. 2022), and the robustness of 

estimates to violations can be transparently reported. The secondary information that 

cameras collect (e.g., behavioural responses) can help practitioners recognize and 

remediate biases (Becker et al. 2022). 

BC’s guidelines for monitoring and inventorying wildlife have guided managers for over 

two decades. They have been essential in standardizing methods and data and 

facilitating comparisons and collaborations. These guidelines no longer reflect the tools 

at wildlife managers’ disposal, however. We identified a disconnect between which 

density estimation models are possible, known and applied by wildlife managers in BC. 

We sought to summarize and explain camera-based density estimation models, 

compare those models to one another and to other models/methods (e.g., aerial 

surveys, DNA mark-recapture), and build tools to help wildlife managers decide which 

camera trap models to implement on a case-by-case basis. Further work is needed 

before more general guidelines can be shared with practitioners, and before updates 
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can be made to BC’s Resources Information Standards Committee (RISC) standards 

for medium-to-large mammal density estimation. We recommend additional field and 

simulation tests of camera trap density estimation models. 
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5. Glossary of Terms 

Accuracy: How close a measured or estimated value is to the true value. 

Camera trap day: 24-hour period during which a camera is functioning (Beirne, personal 

communication). 

Coefficient of variation (CV): The dispersion in a data set, expressed as a percentage of 

the mean; a measure of precision (Whitlock and Schluter 2020). A high CV indicates 

more variability relative to the mean, and low precision; a low CV indicates less 

variability relative to the mean, and high precision.  

Bias: Systematic inaccuracy in estimates (Hammond et al. 2021). 

Detection probability: The likelihood an animal is captured by a camera trap; for some 

models, the probability that an animal is captured by a motion-triggered camera, given 

the animal is in the camera’s viewshed (Moeller et al. 2018). 

Power: The likelihood an effect is detected, given there is an effect to detect (Cohen 

1992).  

Precision: Uncertainty in estimates (Hammond et al. 2021). 

Sightability: The ability to sight or spot animals. 

Variance: The spread of numbers in a dataset compared to the mean of the dataset. 

Viewshed: Depending on the method – the area within which an animal can trigger a 

camera trap to capture an image, or the total area a camera trap photographs (Gilbert et 

al. 2021). May also be referred to as the camera trap field-of-view.  
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6. Positionality Statement 
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Appendix A: Cost Comparison of Aerial vs Camera Trap 

Surveys 

Introduction 

How much does it cost to inventory a wildlife population? “Cost” can be a dollar amount, 

but also a measure of the quality of a population estimate. For example: practitioners 

who need robust population information to make conservation decisions may find 

inexpensive tools and/or methods that produce imprecise, biased, or statistically weak 

results “costly,” despite their small price tag (Davis et al. 2020). Cost can therefore be 

thought of as the money required to undertake a survey effort and/or the relative risk of 

taking management actions based on survey results. 

Direct comparisons of wildlife survey costs should be interpreted with caution – the 

money needed for different surveys varies, but so, too, do the outcomes of those 

surveys (Poole and Reynolds 2010). A presence-absence flight does not produce the 

same results as an intensive aerial survey for density estimation, for instance. The 

comparisons below are meant to demonstrate the relative costs of aerial and camera 

trap surveys by way of high- and low-cost example studies; the comparisons are neither 

exhaustive nor universal. 

Methods 

Camera trap survey cost estimates were based on actual camera networks deployed in 

BC. Estimates included the cost of camera equipment, field needs, and image storage 

and processing. Image processing times were estimated using an average tagging rate 

of 800 images per hour, based on low-end image tagging rates recorded by members of 

the Wildlife Coexistence Lab (unpublished). The approximate cost of the aerial surveys 

was calculated using a helicopter rental fee estimate of $1,400 per hour and a spatial 

coverage estimate of 20 km2 per hour (Bohm, personal communication).  

The high-cost example study covers a large area (about 1,200 km2) in a remote, 

difficult-to-access region. For the camera trap survey: extensive time in the field is 
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needed (about 2 months), and ATVs/helicopters must be rented to access some 

camera sites. 190 Reconyx HyperFire cameras – priced at roughly $515 per unit – are 

required. After the field season, two image taggers working 40 hours per week would 

need about four months to process the images collected. For the aerial survey: a crew 

would need about 60 hours of flight time to cover the same area as the camera network. 

The low-cost example study covers a smaller area (about 400 km2) and is more 

accessible than the high-cost study. For the camera trap survey: approximately 3 weeks 

of field time are required, and no ATV/helicopter rentals are needed. 65 Browning 

StrikeForce Pro cameras – priced at roughly $250 per unit – are required. After the field 

season, one image tagger working 40 hours per week would need about 2 weeks to 

process the images collected. For the aerial survey: a crew would need about 20 hours 

of flight time to cover the same area as the camera network. 

Results 

The cost of a camera trap project will be highest the year that cameras are acquired. 

For the high-cost example, camera units accounted for 65% of total costs for year one; 

costs decreased by nearly 73% from the first year to the second year, after cameras 

had already been purchased (Table 1). An aerial survey that covers the same area as 

the camera network would cost about half as much as the camera project during year 

one, but about twice as much as the camera project in year two (Table 1). For the low-

cost example, camera units accounted for 35% of total costs for the deployment year; 

costs decreased by nearly 40% in following years (Table 1). An aerial survey covering 

the same area as the camera network would cost about 60% of what the camera project 

cost for the deployment year, and slightly less than the camera project in following years 

(Table 1). 

When camera and aerial surveys are conducted yearly (Figure 1, 2A): high-cost aerial 

surveys were more expensive than camera trap surveys every year except for the year 

cameras were purchased, but low-cost aerial surveys were always less expensive. 
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When camera surveys are conducted yearly aerial surveys are conducted every five 

year (Figure 1, 2B): aerial surveys were always less expensive. 

Table 1. Comparison of high- and low-cost camera trap and aerial surveys. Camera trap and aerial survey costs include a 20% 

contingency fund. 

 Year 1 Year 2 Year 3 

High-cost camera 
survey 

$202,007 $54,707 $52,427 

Low-cost camera 
survey 

$56,354 $37,478 $36,698 

High-cost aerial 
survey 

$109,008 $109,008 $109,008 

Low-cost aerial 
survey 

$35,428 $35,428 $35,428 

 

The upfront cost of a camera network will change with trap make and model. For 

example, a Reconyx HyperFire 2 Professional Covert IR Camera is about $515 CAD 

per unit; a Browning StrikeForce HD Pro X is about $250 CAD per unit. The make and 

model most appropriate for an inventorying program will depend on its resources and 

objectives (for more information on selection camera traps for research, visit 

https://wildcams.ca/library/choosing-camera-trap-models/). 

Discussion 

The cost effectiveness of camera trap versus aerial surveys depends on the area of the 

study, the intensity of the camera trapping field effort and the frequency of aerial 

resurveys.  

When comparing cost estimates, the breadth of information collected using each 

method should also be considered. Camera traps are passive, non-selective detectors 

that capture images of a wide variety of terrestrial vertebrates (Kucera and Barrett 

2011). As such, they are a useful tool for multi-species monitoring – population metrics 

can be measured for many species at the same time, by way of a single camera 

https://wildcams.ca/library/choosing-camera-trap-models/
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network (i.e., a single field effort). Aerial surveys, in contrast, are a single-species 

censusing technique, best-suited to large mammals – typically ungulates – that inhabit 

relatively open habitats (BC Ministry of Sustainable Resource Management 2002). 

Multi-species data is collected by repeating flights for different species of interest; 

repeating flights multiplies costs. The data collected by camera traps can also be used 

to make inferences about community composition, interactions between animals and 

their environment, recruitment and survival, habitat selection, prevalence of disease, 

body condition, behaviour, phenology and plant productivity, and more (Dertien et al. 

2017, Hedwig et al. 2018, Hessami 2019, Murray et al. 2021, Sashika et al. 2020, Smith 

et al. 2020, Sun et al. 2021, Windell et al. 2019). Aerial surveys collect information on 

the size of the population and its component herds, as well as sex and age ratios (BC 

Ministry of Sustainable Resource Management 2002). 

Depending on the processing software used, the experience of the processing staff, and 

the content of the images, image tagging rates may be slower or faster than 800 images 

per hour. 

 

Figure 1. Comparison of high- and low-cost camera and aerial surveys. Dark bars represent the total estimated cost of camera 

projects, including camera equipment, field needs and image storage/processing; light bars represent an additional 20% 

contingency fund. Year 1 includes camera units as an expense; subsequent years exclude camera units as an expense. From Year 

3 onwards, expenses should remain steady. Dashed lines represent the estimated cost of aerial surveys covering the same areas 

as the camera trap networks; this cost remains fixed over time (barring inflation, changes to aircraft rental policy, etc.). Aerial survey 

costs also included a 20% contingency fund. 
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Figure 2. A) Cumulative cost of yearly aerial and camera trap surveys. B) Cumulative costs of yearly camera trap surveys and aerial 

surveys every 5 years. Camera trap and aerial survey costs include a 20% contingency fund. 
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