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Abstract

Camera‐based abundance estimators are an alternative meth-

odology of growing interest in both research and management

applications. The statistical formulations of camera‐based

abundance estimators using time‐lapse data should theoreti-

cally produce precise and unbiased estimates; however,

production of unbiased results also requires meeting several

important assumptions, and real‐world case studies evaluating

such results remain relatively few. We applied instantaneous

sampling (IS) and space‐to‐event (STE) estimators to remote

camera data collected in April 2021 via time‐lapse sampling of

closed populations of bighorn sheep (Ovis canadensis) and mule

deer (Odocoileus hemionus) on Wild Horse Island in western

Montana, USA, and compared results for bighorn sheep to

aerial and ground‐based counts. Point estimates from camera‐

based approaches underestimated bighorn sheep populations

by 32–44% (IS estimator) and 62–69% (STE estimator) relative

to aerial and ground counts. Patchy spatial distribution and

group‐living behavior of sheep resulted in a high degree of

noise surrounding the IS estimate. In comparison, a low point

estimate with relatively narrow confidence intervals suggested

potential sensitivity of the STE estimator to violating assump-

tions of independence among individual animals and sampling

occasions. Estimates of mule deer had improved precision over

sheep estimates, as indicated by lower estimated coefficients

of variation of the mean (CVmean) derived from the analytic SE

estimator. Using 15‐m viewsheds and the IS estimators, mule
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deer density estimates came with a 26% CVmean compared to

43% CVmean for bighorn sheep. This discrepancy may be a

result of differences in distribution, behavior, and relative

abundance between the 2 species. Accounting for group size

and increasing time between sampling may improve accuracy

of density estimates and adhere better to model assumptions

when estimating precision. In addition, factors influencing

viewshed and resulting density extrapolations must be

considered carefully. While camera‐based methods theoreti-

cally provide an alternative way to estimate density when

traditional methods are impractical, our results suggest that

more work is needed to ensure density estimates are accurate

and precise enough to inform population management.

K E YWORD S

abundance, camera trap, Ovis canadensis, space‐to‐event, time‐lapse,
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Estimates of population abundance are a foundational component of many wildlife monitoring and management

programs (Pollock et al. 2002). For ungulate species, count data are commonly collected by wildlife managers via

aerial or ground surveys to monitor population abundance and trends (DeCesare et al. 2016, Zabransky et al. 2016,

Forsyth et al. 2022). Camera‐based abundance estimators are an alternative methodology of growing interest in

both research and management applications, particularly in environments where other survey methods are

hampered by poor visibility of animals or other logistical constraints (Gilbert et al. 2020).

Remote cameras are a powerful means to detect and count species across diverse landscapes and habitats,

yet the data collected from cameras present challenges when seeking unbiased population estimates (Sollman

et al. 2013). Such challenges include the inability to identify individual animals amongst detections for many

species and uncertainty in how the detection process is affected by heterogeneity in both animal movement and

camera motion‐trigger functionality (Burton et al. 2015). A variety of new statistical techniques have been

developed to estimate density of unmarked animals using remote cameras, including techniques that specifically

address imperfect capture probabilities ubiquitous in motion‐triggered photography (Hofmeester

et al. 2017, 2019, Howe et al. 2017, Nakashima et al. 2018). An alternate approach that addresses

heterogeneity in capture probability is to collect time‐lapse pictures (e.g., taken every 5 minutes), which are

sampled and recorded without motion triggers. The instantaneous sampling (IS) and space‐to‐event (STE)

estimators were developed to evaluate time‐lapse sampled data (Moeller et al. 2018) and have been applied

across a diversity of study systems (Amburgey et al. 2021, Ausband et al. 2022, Leo et al. 2022). This approach

removes components of camera‐based sampling that lead to high heterogeneity in capture probability (i.e.,

variation in the effectiveness of motion‐triggered photography) and overall reduction of conditions under which

capture probability is <1 (Moeller et al. 2023).

The statistical formulations of camera‐based abundance estimators using time‐lapse data should theoretically

produce precise and unbiased estimates. However, production of unbiased results also requires meeting several

important assumptions, and real‐world case studies evaluating such results remain relatively few. Moeller et al.

(2018) presented a case study wherein camera‐based IS and STE estimates both underestimated sightability‐

corrected counts of elk (Cervus canadensis), yet they admittedly violated assumptions of random camera placement
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(IS and STE), perfect capture probability (IS and STE), and independent movement among individuals (STE only) with

unmeasured effects (Lyet et al. 2024). Leo (2022) found IS and STE camera‐based point estimates of feral sheep

(Ovis aries) abundance to be slightly higher and lower, respectively, to a population estimate produced from aerial

distance sampling; however, confidence intervals of all estimates overlapped. Grouping behavior of sheep in this

study may have violated the assumption of independent movement for STE estimates and only daytime pictures

were analyzed, both of which may have affected results. Amburgey et al. (2021) found both IS and STE estimators

to be biased high when estimating brown tree snake (Boiga irregularis) abundance; however, they violated the

assumption that animals moved randomly with respect to camera sites by using lures to increase detections.

Remaining studies to date focus predominately on motion‐triggered camera data, which may be necessary to

generate sufficient images of rare species but come with heavy baggage of heterogeneity in capture probability and

corresponding sampling uncertainties (Moeller et al. 2023).

We applied IS and STE estimators to remote camera data collected via time‐lapse sampling of closed

populations of bighorn sheep (Ovis canadensis) and mule deer (Odocoileus hemionus) occupying Wild Horse Island

in western Montana, USA. Island ungulate populations present favorable opportunities to apply such

methodologies to truly closed populations. For bighorn sheep, the resulting estimates could also be readily

compared to minimum count data from other commonly applied approaches, including aerial and ground surveys.

Our first objective was to produce counts or statistical estimates of abundance for bighorn sheep on Wild Horse

Island, Montana, using 3 methods including traditional aerial survey‐based minimum counts, ground survey‐based

minimum counts, and time‐lapse remote camera‐based population estimates. Our second objective was to assess

the agreement and coverage of traditional survey methods with camera‐based estimates using multiple

estimators (IS, STE). Our third objective was to assess how logistical considerations of day versus night, viewshed

maximum radius, and overdispersion or patchiness in detections affected camera‐based estimates for bighorn

sheep and mule deer.

STUDY AREA

Wild Horse Island was an 8.7‐km2 state park located within Flathead Lake and within the exterior boundary of the

Flathead Indian Reservation in northwest Montana (Figure 1). Fifty‐six small, 0.004‐km2, private parcels exist along

the island's shoreline but did not penetrate the interior of the island. The southern and predominately south‐facing

portion of the island consisted of grassland vegetation over mixed topography, interspersed with ponderosa pine

(Pinus ponderosa) and Douglas‐fir (Pseudotsuga menziesii). This was juxtaposed with the northern and predominately

north‐facing portion of the island, which was heavily timbered with the same conifer species. The shoreline of the

island was 885m above sea level, and there were 6 summits ranging from heights of 999m to 1,141m. Average

yearly precipitation on the island was 400mm, and average daily temperatures ranged from −4°C to 19°C. The

island was home to bighorn sheep, mule deer, coyotes (Canis latrans), red foxes (Vulpes vulpes), and the occasional

mountain lion (Puma concolor), and black bear (Ursus americanus).

Bighorn sheep were successfully introduced to Wild Horse Island in 1939 by a private landowner. These sheep

are isolated to the island, which is ≥2 km from the nearest mainland shoreline. In 1977, the island became a state

park, and since that time annual helicopter surveys have been conducted to monitor the sheep population. These

surveys are typically completed during the winter or spring green‐up period (early to mid‐April) and sightability is

considered good because most of the sheep are found on the southern half of the island where forest cover is

sparse. Bighorn sheep management on the island includes a population target of 110 individuals, and management

activities occasionally include removal of sheep from the island for population augmentation or reintroduction at

sites elsewhere (Montana Fish, Wildlife and Parks 2010). Since 2015, multiple mountain lions have been observed

on the island and have been implicated in a precipitous decline in sheep numbers and overall recruitment. All data

for this study were collected during April 2021.

COMPARING COUNT METHODS | 3 of 14
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METHODS

Aerial and ground surveys

We conducted transect‐based aerial surveys of bighorn sheep in a Hughes 500 helicopter in April 2021, coinciding

with ongoing camera sampling. Survey replicates were conducted on 12 April and 23 April by a crew including a

primary observer and a pilot, functioning as a second observer. We flew north‐south transects with the intention of

complete visual coverage of the entirety of the island. Transect widths were 350m in open grasslands and 250m in

forested areas. Because of the tendency of bighorn sheep to flee from the helicopter when in open terrain, we used

wider transects in open areas to take advantage of increased sightability and minimize disturbance to animals. We

recorded the flight path and sheep locations using hand‐held global positioning system (GPS) units and classified

sheep as adult males, adult females, and yearlings (i.e., 11 months old). Because of the difficulty of distinguishing

between young males and females from the air, it is possible that young males that had not yet dispersed from

female bands were classified as females. We considered numbers of sheep observed during each flight as a

minimum count. We then pooled data across flights by taking the higher count per flight of each classification of

adult males, adult females, and yearlings to produce an across‐flights minimum count that leveraged the highest

count of each age‐ and sex‐specific grouping.

We conducted ground surveys for bighorn sheep on 20 April 2021 with 12 independent observers split into 6

2‐person teams. We created survey routes for each observer by first dividing the island evenly into a grid of 100

equal‐area cells (284 × 284m) and randomly selecting 52 spatially distributed grid cells for targeted surveys.

F IGURE 1 Wild Horse Island study area showing A) aerial imagery, B) aerial survey flight paths, C) ground
survey transects and point locations, and D) remote camera locations in Montana, USA, 2021.
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We then assigned each team to sample 10‐12 cells and selected 2 survey points (one per observer) to maximize site

distance and viewshed within each cell. Observers walked independently along pre‐determined survey routes and

recorded counts of all observed bighorn sheep, including those along routes, within cells and at survey points. Along

routes we recorded groups within 200‐m transect widths on each side of the survey route (Figure 1). All observers

were in contact with adjacent teams to avoid double counting of sheep. Observers documented each group of

sheep observed, group composition, and time of observation. When teams observed a group of sheep, they

recorded the location of observer and bearing and distance to sheep so that the location of each sheep group could

be determined post hoc. Sheep on the island are highly habituated to human hikers and typically did not flee from

people approaching closely.

Camera surveys

We used a systematic sampling design to evenly distribute camera‐based density sampling across the entire island

study area. We used the same grid of 100 equal‐area cells (284 × 284m) as described for ground surveys but

sampled every cell with a camera location at the cell centroid. We removed 3 of these centroid locations from the

sample because of field logistics (e.g., private land and high probability of camera theft) and deployed cameras on

the remaining 97 locations. We disabled the motion sensors of each camera and programmed cameras to collect

time‐lapse images every 5minutes during a 1‐month study period of 1 April–30 April 2021. We considered each

picture captured at this 5‐minute interval as a sampling occasion, and pictures capturing animals as detections.

When deploying cameras in the field, we established cone‐shaped viewsheds at each location with a maximum

radius of 30m from the camera location. We placed markers (reflective snow‐stakes and tape) at fixed distances of

15m, 20m, and 30m from the camera to delineate 3 viewsheds of different radii that could be identified within

images (Figure 2). We then measured the viewshed area by dividing the camera's field of view into 6 cone‐shaped

sectors and measuring distances of different obstructions that reduced viewable area, as described by Moeller et al.

(2023). We used these data to measure 3 definitions of viewshed area, according to the maximum radii of 15m,

20m, and 30m and accounting for obstructions due to vegetation and topography at each distance.

We manually classified species detections in all images, with output data for each image including counts of all

bighorn sheep and mule deer within each of the 3 field‐measured viewsheds of maximum radii 15 m, 20m, and

F IGURE 2 Schematic of camera plots on Wild Horse Island, Montana, USA, in 2021 showing placement of
reflective snow stakes to mark multiple viewshed radii at distances of 15m, 20m, and 30m from the camera.
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30m, which equaled areas of 77.5 m2, 137.7 m2, and 309.9 m2, respectively. We also recorded periods of camera

misalignment (e.g., bumped out of alignment by wildlife) or obscured field of view (e.g., lens covered by snow) that

were later censored from analyses. When classifying images, we determined that the shortest viewshed radius of

15m could not be completely illuminated by nighttime flashes for a subset of cameras (n = 15), and we censored all

night images from these sites. In most cases this was caused either by a camera aimed too low or by a branch or tree

in the immediate foreground that caused areas farther away to be underexposed in images. We extrapolated

density estimates to abundance by multiplying density by the 3‐dimensional surface area of Wild Horse Island

(9.359 km2), which we estimated using the 3D Analyst extension for ArcGIS 10.8.2 (Esri, Redlands, CA, USA) and a

digital elevation model of 3‐m resolution.

Statistical analyses

We estimated density for bighorn sheep and mule deer using viewsheds of 15m, 20m, and 30m and using both the

IS and STE estimators. The IS estimator treats density as the mean of observed densities (i.e., total animals counted

within the viewshed divided by the respective viewshed area) across each camera i and sampling occasion j

according to Moeller et al. (2018). We estimated analytic standard errors for the IS estimator using i = 1, 2, …, M

cameras as:
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where D̂ is density, J ∙ ai is the summed area of camera i across all occasions, L is the sum of all J ∙ ai area totals

across cameras, count ni is the count of animals over all occasions at camera i, and N is the total count of animals

over all animals and occasions (Moeller et al. 2018). We estimated density across the entire study period and for

each day of the study. To account for temporal autocorrelation of 5‐minute time lapse sampling occasions, we also

estimated standard errors using bootstrapping to resample data across cameras. We resampled cameras with

replacement, generated 5,000 bootstrapped estimates of density, and used resampled data to estimate the

bootstrapped standard error for each density estimate. We then estimated 95% confidence intervals surrounding

point estimates of density (D̂) assuming log‐normal distribution of estimates (Buckland et al. 1993).
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The STE estimator is an adaptation of time‐to‐event, or survival, models founded upon the repeated summation

of space sampled by randomly sorted camera viewsheds until a detection of the target species occurs within each

sampling occasion (Moeller et al. 2018). The STE estimator assumes a Poisson distribution of animal detections and

that the space between detections is an exponentially distributed function of the mean number of animals (Moeller

et al. 2018). We estimated STE‐based density and analytical standard errors using the spaceNtime package (Moeller

and Lukacs 2021) for program R 4.2.1 (R Core Team 2022). We similarly used Equations 2 and 3 to estimate log‐

normal confidence intervals for STE estimates. We defined sampling effort (i.e., time intervals during which cameras
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were active) for each camera, excluding occasions when cameras were misaligned or intermittently obstructed. We

estimated the coefficient of variation of the mean (CVmean = SE/mean; Twining et al. 2022) for density estimates of

bighorn sheep and mule deer using 15‐m viewsheds and mean and SE estimates from the IS estimator and analytic

standard error estimates (Equation 1).

RESULTS

We conducted aerial surveys under good survey conditions and maintained similar flight paths between surveys

(Figure 1). Daily temperatures in April 2021 ranged from −7°C to 24°C, and we did not observe any significant

weather events that may have affected sheep distribution during the study period. During the first survey, we

observed 63 sheep (26 males and 37 females), compared to 66 sheep (19 males, 45 females, and 3 yearlings) during

the second survey. Combined, these surveys produced a minimum count of 74 sheep, including 26 males,

45 females, and 3 yearlings.

Six, 2‐observer teams conducted a ground survey for bighorn sheep on 20 April 2021. After accounting for

sheep observed by multiple observers, teams observed 77 sheep (22 adult males, 45 adult females, and

10 yearlings; Figure 3). Group size ranged from 5 to 18 sheep, with an average group size of 11 sheep.

We recovered camera‐based density data from 93 of 97 deployed cameras. After filtering data to remove

sampling occasions with poor visibility or misaligned viewsheds, these data included 668,523 images across 8,639

5‐minute sampling sessions during the 30‐day study period. Point estimates of density for bighorn sheep and mule

deer using the IS estimator with 15‐m viewsheds were 4.59/km2 and 19.9/km2, respectively, which translated to

abundance estimates of 43 bighorn sheep and 186 mule deer (Table 1). Standard error estimates were similar

between the analytical estimator for IS and bootstrapped resampling for both bighorn sheep (SEanalytical = 1.97,

SEboostrap = 1.93) and mule deer (SEanalytical = 5.19, SEboostrap = 5.15). Using 15‐m viewsheds and the IS estimators,

mule deer density estimates came with a 26% CVmean compared to 43% CVmean for bighorn sheep. The point

estimate of bighorn sheep density using the STE estimator (DSTE = 2.60) was considerably lower than that for IS, as

was the standard error (SESTE = 0.23). We observed similar results for mule deer, where STE‐based point estimates

(DSTE = 12.8) and standard error (SESTE = 0.51) were both considerably less than that for IS (DIS = 19.9, SEIS = 5.2;

Table 1; Figure 3).

Comparison of aerial survey, ground survey, and camera‐based estimates of bighorn sheep showed mixed

results (Figure 3). Aerial and ground count data yielded minimum counts without estimable metrics of uncertainty.

Despite those limitations, minimum counts from 2 pooled aerial surveys (N = 74) and a single ground survey (N = 77)

were quite similar. Point estimates of abundance from cameras using 15‐m viewsheds were lower than minimum

counts for both the IS (NIS = 43) and STE (NSTE = 24) estimators (Figure 3). The STE‐based standard errors were small

and confidence intervals did not include minimum count estimates from aerial and ground‐based methods

(Figure 3). However, 95% log‐normal confidence intervals for IS‐based estimates included aerial and ground survey

minimum counts under both analytic (95% CI = 19.2–96.3) and bootstrap (95% CI = 19.5–94.7) estimates of

variance (Figure 3). Density estimates restricted to sampling sessions at night were higher than those estimated

during the day for both bighorn sheep and mule deer (Figure 4). Nighttime density estimates decreased with

increasing viewshed area for both bighorn sheep and mule deer, indicating imperfect detection beyond 15m during

periods of darkness (Figure 4). This effect was intuitively less pronounced during daytime, but a consistent decrease

in density estimates with increasing viewshed area nonetheless remained (Figure 4).

Bighorn sheep detections were concentrated on similar south‐facing, steep, and open vegetation types across

aerial survey, ground survey, and remote camera methodologies, whereas mule deer detections via camera were

more evenly distributed (Figure 5). Cameras detected a small degree of bighorn sheep presence in forested and

north‐facing environments distinct from any groups observed during aerial or ground surveys (Figure 5). Variation

was high in camera‐based estimates of density across the 30‐day study period (Figure 6). Estimated density was 0

COMPARING COUNT METHODS | 7 of 14
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(i.e., no detections) during 18 of the 30 days, and estimates ranged from 0.5–42.7 sheep/km2 during the other

12 days with non‐zero density estimates (Figure 6).

DISCUSSION

Point estimates from camera‐based approaches underestimated bighorn sheep populations by 32–44% (IS

estimator) and 62–69% (STE estimator) relative to aerial and ground counts. However, 95% confidence intervals for

bighorn sheep abundance using the IS estimator overlapped aerial‐ and ground‐based minimum counts, while those

from STE estimates did not (Figure 3). These results highlight the impact of sampling variation on abundance

estimates when using cameras to monitor wildlife populations. In theory, random or systematic sampling of camera

locations combined with time‐lapse sampling of viewshed images at each location yields unbiased samples of animal

density over space and time (Moeller et al. 2018); however, sampling animal density in a small viewshed area

inherently produces noise (e.g., Figure 6). Such noise is further amplified in real‐world settings as animal counts

become clumped, or over‐dispersed, owing to biological patterns, such as habitat heterogeneity and social grouping

F IGURE 3 Confidence intervals surrounding bighorn sheep population estimates on Wild Horse Island,
Montana, USA, in 2021 from the instantaneous estimator for camera‐based density estimation (camera‐IS; using
both analytic and bootstrap approaches to variance estimation) included minimum counts collected via aerial
surveys and ground surveys, whereas confidence intervals using the space‐to‐event (STE) estimator did not.

8 of 14 | COLTRANE ET AL.
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of individuals (Loonam et al. 2021). We found bighorn sheep tended to congregate in groups and select for steep

and open landscapes on Wild Horse Island (Figure 5), as has been shown in other areas (DeCesare and

Pletscher 2005, 2006, Lula et al. 2020). This contributed to large uncertainty around density estimates ranging from

0–42.7 animals/km2 (Figure 6) and created wide IS confidence intervals.

F IGURE 4 Camera‐based density estimates for bighorn sheep and mule deer on Wild Horse Island, Montana,
USA, in 2021 decreased with increasing maximum viewshed radius (15 m, 20m, and 30m), particularly when
analyses were restricted to images collected during the night as compared to those collected during the day.

TABLE 1 Results of camera‐based monitoring of bighorn sheep and mule deer according to viewshed
maximum radius (rmax) and showing the number of images with detections and estimates (and analytical 95%
log‐normal confidence intervals) of density (D) and abundance (N) of bighorn sheep from the instantaneous
sampling estimator (DIS, NIS) and space‐to‐event estimator (DSTE, NSTE), Wild Horse Island, Montana, USA, 2021.

rmax Images DIS DSTE NIS NSTE

Bighorn sheep

15m 130 4.59 (2.0, 10.3) 2.60 (2.2, 3.1) 42.9 (19, 96) 24.4 (21, 29)

20m 149 2.95 (1.3, 6.5) 1.72 (1.5, 2.0) 27.6 (12, 61) 16.1 (14, 19)

30m 214 2.56 (1.3, 5.0) 1.17 (1.0, 1.3) 24.0 (12, 47) 11.0 (10, 12)

Mule deer

15m 646 19.9 (12.0, 32.9) 12.8 (11.8, 13.8) 185.8 (112, 308) 119.1 (111, 129)

20m 859 17.4 (11.3, 26.6) 9.89 (9.2, 10.6) 162.5 (106, 249) 92.6 (86, 99)

30m 1,348 14.8 (10.6, 20.7) 7.22 (6.8, 7.6) 138.9 (99, 194) 67.5 (64, 71)
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In comparison, the STE estimator resulted in a low point estimate with relatively narrow confidence intervals

that did not overlap counts from aerial and ground surveys. These results suggest potential sensitivity of this

estimator to violating assumptions of independence among individual animals and sampling occasions. The STE

estimator assumes that animals move independently and does not incorporate information regarding total number

of animals in cases when a detection includes more than a single individual in the measured viewshed (Moeller

et al. 2018). It has been rigorously shown that bighorn sheep individuals rarely move independently because of their

social behavior (DeCesare and Pletscher 2005). This behavior may effectively translate STE‐based density estimates

to actually be of groups rather than individuals, potentially explaining the relatively low point estimate.

Furthermore, the STE estimator assumes independence among sampling sessions, such that animals are

redistributed amongst the study area between sessions. In our case, detections (and lack of detections) among

5‐minute time‐lapse images are surely autocorrelated, exemplified by observations of animals bedded or foraging in

front of cameras across sequential images. A similar phenomenon of spatiotemporal autocorrelation was observed

in a camera‐based study of wolves (Canis lupus), where a single camera out of 215 deployed was responsible for

>50% of the detections (Ausband et al. 2022). This autocorrelation has the potential to strongly influence point

estimates and bias analytical estimates of variance low; this also may partially explain relatively narrow confidence

intervals surrounding STE estimates (Figure 3). Increasing the timespan between sampling occasions may help

F IGURE 5 Spatial locations of bighorn sheep detected via aerial surveys, ground surveys, and camera‐based
monitoring on Wild Horse Island, Montana, USA, in 2021 show heterogenous clustering of bighorn sheep
detections in steep and open (yellow) portions of the study area compared to more homogenous distribution of
mule deer detections in both open and forested (green) areas.
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alleviate this issue of temporal autocorrelation but may increase the violation of other assumptions, such as

population closure. Longer study periods may affect results via changes in population size due to immigration,

emigration, births, and deaths. Bootstrapping has been suggested as a means to generate appropriate variance

estimates when faced with autocorrelation (Moeller et al. 2018, Ausband et al. 2022); however, resampling cameras

with replacement, including identical copies of monitoring histories across resampled data replicates, creates a

problem unique to STE analyses where only the first detection is used. An alternate means of correcting STE

estimates for autocorrelation across sampling sessions is needed.

The importance of 4 methodological details on camera‐based abundance results also became clear during this

study. First, we measured viewshed area at each camera site to account for site‐specific variation in vegetative or

topographic obstructions. In our study this resulted in a 3%, 5%, and 10% proportionate decrease in area sampled

for viewsheds of 15‐m, 20‐m, and 30‐m radii, respectively, and a corresponding 3%, 5%, and 10% increase in

density estimates. In a similar study in a more heavily forested environment, Moeller et al. (2023) showed 29%

proportionate changes in viewshed area and density, driven by greater reduction in viewshed areas from denser

vegetation. Second, density estimates decreased as viewshed radii increased, particularly at night, which indicated

that the realized viewshed at night was likely less than our maximum 30‐m radius (Figure 4). Practitioners of this

approach need to consider flash distances carefully and ensure that the full area of viewsheds are truly visible

across data streams, particularly when including night sampling. Third, when measuring viewshed areas, we used

3‐dimensional distances to mark viewshed boundaries; for example, using a measuring tape to mark a 15‐m

distance from the camera includes the effect of changes in elevation in that distance. Extrapolating such density

estimates to the full study area required a 3‐dimensional measure of study area. In our case, the 3‐dimensional area

of Wild Horse Island (9.36 km2) was 6% greater than 2‐dimensional estimates (8.83 km2), which resulted in a 6%

proportionate increase in abundance estimates when extrapolating camera‐based density estimates to abundance

of the entire island. Fourth, in an open environment like the grasslands of this study area, it was often possible to

F IGURE 6 Daily density estimates of bighorn sheep on Wild Horse Island, Montana, USA, in 2021 resulting
from camera‐based monitoring show high levels of temporal sampling variation relative to reference values of
density observed during aerial and ground surveys.
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detect animals beyond the measured viewshed area. Restricting our analysis to animals within viewsheds reduced

the counts of animals from 3,664 individual bighorn sheep within all images to 474 sheep within measured

viewsheds. This discrepancy highlights the paramount importance of linking animal detections and counts to the

viewshed areas that are measured when seeking camera‐based density estimates.

Patterns in bighorn sheep estimates were largely upheld by those for mule deer; however, because we did not

apply multiple field methods to enumerate mule deer, we have no direct comparisons of abundance. Overall,

estimates suggesting mule deer were more abundant than sheep agree with biologist perceptions concerning their

relative abundances on the island. Mule deer estimates did come with improved precision, as indicated by a lower

estimated coefficient of variation of the mean (CVmean) derived from the analytic SE estimator. Using 15‐m

viewsheds and the IS estimators, mule deer density estimates came with a 26% CVmean compared to 43% CVmean

for bighorn sheep. In this study area, mule deer estimates likely yielded improved precision for multiple reasons: 1)

mule deer appeared to use habitat more generally, which resulted in more even spatial distribution of this species

across the sampling frame of cameras (Figure 5), 2) the higher overall density of mule deer likely yielded more

frequent detections and less overdispersion or variability in patterns of detection by cameras, and 3) the smaller

average group size for mule deer (2.68) compared to that for bighorn sheep (4.03), in combination with higher

overall abundance, also yielded more groups on the landscape available for detection with higher consistency by

cameras. These differences highlight that animal life histories and study area heterogeneity can affect the precision

achievable with this technique across systems.

MANAGEMENT IMPLICATIONS

While camera‐based methods may be a practical means to estimate abundance, more work is needed to ensure

those estimates adequately reflect true density and are both accurate and precise enough to be useful to

biologists and applicable to population management. Biologists often use point estimates when managing

populations, and therefore accurate estimates or ones with tight confidence intervals are paramount. Without

accurate estimates, wildlife managers may employ incorrect harvest or disease management strategies

resulting in unwanted population growth or decline. Our results emphasize the importance of understanding

how a population's distribution and individuals' behavior affect the efficacy of alternative methods for

estimating abundance. Agencies must consider these factors when designing protocols to monitor ungulate

populations.

In our study of a small, group‐living sheep population, the point estimates generated by the IS and STE models

were much smaller than the actual population. This underestimation combined with poor, or potentially biased,

precision estimates could lead to mismanagement of this sheep population. For example, bighorn sheep on Wild

Horse Island are translocated to repopulate other populations that have been affected by disease events. The

statewide management plan recommends removing sheep when the population exceeds 110 individuals. If sheep

removals were dependent on our camera‐based abundance estimates, sheep could become overabundant, resulting

in habitat alteration and lost opportunities to augment struggling populations elsewhere. If the estimate produced

by the models overestimates abundance, sheep could be removed from the island, which could reduce the

population beyond management objectives. In other areas of Montana, bighorn sheep are managed through

selective harvest. Underestimating these populations could lead to overabundance of sheep resulting in lost harvest

opportunity, possible habitat effects, and increased disease occurrence, whereas overestimating populations could

result in over‐harvest and significant population declines.
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