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1  | INTRODUC TION

Spatially explicit capture–recapture (SECR or SCR) is a set of meth-
ods for estimating animal population density with data from an array 
of passive detectors (Borchers & Efford, 2008; Efford, 2004; Efford, 
Borchers, & Byrom, 2009; Royle, Chandler, Sollmann, & Gardner, 
2014). Unbiased estimates of population density may be obtained 
with a rich variety of detector configurations – putting aside 

potential bias with linear configurations (Efford, 2019a) – and the 
method has been applied post hoc to many different datasets. The 
robustness of SECR shifts the focus of study design from avoiding 
bias to maximizing precision (Efford, Warburton, Coleman, & Barker, 
2005). Many applications have yielded estimates with inadequate 
precision, and it is time to consider how this can be avoided.

A dataset for SECR comprises a set of detection histories, one for 
each detected individual, and the known locations of the detectors. 
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Abstract
1.	 Spatially explicit capture–recapture methods use data from the detection of 

marked animals at known points in space to estimate animal population density 
without bias from edge effects. Detection is by means of stationary devices such 
as traps, automatic cameras or DNA hair snags. Data collection is often expensive, 
and it is not obvious how to optimize the frequency of sampling and the spatial 
layout of detectors. Results from a pilot study may be extrapolated by simulation 
to predict the effectiveness of different configurations of multiple detectors, but 
simulation is slow and requires technical expertise.

2.	 Another approach for evaluating novel designs is to compute intermediate varia-
bles such as the expected number of detected individuals E(n) and expected num-
ber of recapture events E(r), and to seek relationships between these variables and 
quantities of interest such as precision and power.

3.	 We present formulae for the expected counts and power. For many scenarios the 
relative standard error (RSE) of estimated density is close to 1∕

√

min{E(n),E(r)}, 
and for maximum precision E(n) ≈ E(r). We compare the approximation for RSE( ̂D) 
with more rigorous results from simulation.

4.	 Computation of E(n) and E(r) is deterministic and much faster than simulation, so 
it is readily included in interactive software for designing studies with enough 
power to answer ecological questions. The related approximation for RSE( ̂D) is ad-
equate for many purposes.
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A detection history records the number of detections of an individ-
ual at each detector on each sampling occasion, and possibly other 
information associated with each detection. Procedures for the anal-
ysis of such data by maximum likelihood or Bayesian approaches are 
now well established (Borchers & Efford, 2008; Borchers & Fewster, 
2016; Efford et al., 2009; Royle et al., 2014; Royle & Young, 2008). 
We use maximum likelihood in our simulations, but the same design 
considerations apply when Bayesian analyses are used. Our focus 
is on demographically closed populations and the estimation of 
population density; other considerations come into play for the es-
timation of survival, recruitment and movement in models for open 
populations.

The relative efficiency of detector configurations for SECR has been 
assessed by simulation for black bear Ursus americanus (Clark, 2019; 
Sollmann, Gardner, & Belant, 2012; Sun, Fuller, & Royle, 2014) and a 
few other species (Kristensen & Kovach, 2018; Tobler & Powell, 2013). 
Datasets are generated stochastically from the parameterized probabil-
ity models for spatial distribution and the detection process, and esti-
mates are obtained from each dataset by the chosen analysis method. 
Precision is measured by the average over replicates of the estimated 
relative standard error �RSE( ̂D)=�SE( ̂D)∕ ̂D, sometimes denoted CV( ̂D). 
Simulation is feasible because the detection model in SECR is modular 
and scalable: the model describes the probability of detecting a particu-
lar individual in a particular detector, and data for populations and arbi-
trary detector arrays are extrapolated from the individual‐based model.

Simulation can be laborious because model fitting is computer‐
intensive and inference requires multiple replicates. Formal analy-
sis of the SECR model for the prediction of precision has not been 
attempted and may be intractable. However, we show in this paper 
that important properties of a spatial capture–recapture design, 
the expected numbers of unique individuals and recaptures, may be 
computed deterministically from pilot estimates of the parameters, 
without recourse to simulation. We demonstrate that the expected 
numbers are in turn highly predictive of the precision of SECR es-
timates. This approach enables fast comparison of candidate study 
designs in freely available software (Efford, 2019b, 2019c).

2  | MATERIAL S AND METHODS

SECR combines a model for the spatial distribution of individuals (the 
population model) and a model for the spatial detection process (pri-
marily a radial decline in detection probability with distance). Each 
submodel contributes to the sampling variance of density estimates.

2.1 | Population model

The population is conceived as a spatial point process; each animal is 
represented by a unique and persistent point, nominally its ‘activity 
centre’. The intensity of the point process is the density of the popu-
lation. The intensity may vary over space, leading to an inhomogene-
ous model for the expected density D(x) where x represents a point 
in two dimensions.

A random uniform distribution of animals corresponds to a 
Poisson spatial point process. In the pure Poisson model, the pop-
ulation extends indefinitely in all directions. Only animals near the 
detectors are likely to be detected and, for well‐behaved detection 
functions that decline rapidly towards zero, the number of detected 
animals n is a Poisson random variable.

Descriptions of SECR commonly focus on a fixed number of in-
dividuals N distributed uniformly in a region A (i.e. a binomial spatial 
point process). Fixing the number of individuals in A is equivalent 
to considering one realization of the Poisson model (e.g. Efford & 
Fewster, 2013). For fixed N the number of detected animals is a bi-
nomial random variable with size N, which is convenient for Bayesian 
analyses using data augmentation (Royle et al., 2014). The choice be-
tween the binomial and Poisson spatial point processes (and hence 
between binomial and Poisson n) otherwise depends on the sampling 
context and is not addressed here. Density estimates are identical or 
nearly so under the two models, but the binomial model has lower 
sampling variance. The difference in RSE2 is shown in Appendix S1 
to depend only on E(N) = DA for uniform density D. Thus, given a 
value for precision under the Poisson model RSEP≡

√

varP(
̂D)∕ ̂D, the 

binomial‐model precision is RSEB=
√

RSE2
P
−1∕(DA).

2.2 | Detection model

We assume detections have been made at K detectors on S occa-
sions (sampling intervals), and that the hazard of detection in detec-
tor k for an animal centred at x depends on the distance dk(x). The 
form of the relationship is not critical – a half‐normal relationship is 
commonly assumed i.e. λ(dk(x)) = λ0 exp [−dk(x)2/(2σ2)] where λ0 and 
σ are parameters. It is convenient to formulate the detection process 
in terms of hazard λ(d) rather than probability g(d), but the two are 
interchangeable (g(dk(x)) = 1 − exp [ − λ(dk(x))]).

SECR models accommodate variation in detection probability 
with respect to individual (i), time ( j) or detector (k), but we suppress 
these for notational simplicity, and hence λ0(ijk) = λ0 and σ(ijk) = σ for 
all i,j,k. Detector arrays may be of almost any shape and the spacing 
between detectors need not be uniform.

2.3 | Detector types

We distinguish four detector types that use a sampling device at a 
point. Each type implies a different process of interaction among ani-
mals and detectors, and hence different possible detection histories 
(Efford et al., 2009; Table 1). We use ‘trap' specifically for a device that 
detains an animal once caught; an animal therefore may be detected 
only once on any occasion. Traps may be either exclusive (‘single‐
catch’) or allow the simultaneous capture of multiple animals (‘multi‐
catch’). Modelling of data from multi‐catch traps uses a competing risk 
model (Borchers & Efford, 2008). Probability modelling of single‐catch 
trap arrays is intractable. It is usually adequate to treat data from sin-
gle‐catch traps as if they came from multi‐catch traps. Proximity de-
tectors do not detain the animals they detect, so any animal may be 
detected at multiple detectors on one occasion. Repeated visits of an 
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animal to a single detector within an occasion may be indistinguish-
able or treated as such, to give a single binary observation, or they may 
be recorded and modelled as an integer count. Counts are typically 
treated as Poisson‐distributed.

3  | E XPEC TED SAMPLE SIZE

This section introduces quantities derived from the parameterized 
SECR model that are used later. We define the quantity Λs(x) ≡ ∑kλ(dk(x)) 
for the cumulative hazard of detection on occasion s of an individual 
centered at x. Aggregating over occasions gives Λ(x) = ∑sΛs(x). If all po-
tential detections are recorded then Λs(x) is the expected total number 
of detections on one occasion for an animal centred at x. Only Poisson 
‘count’ detectors are assumed to act like this. Nevertheless, Λs(x) is 
useful for predicting the outcome for binary detector types as we 
show next. Formulae for the expected number of movements (spatial 
recaptures) are in Appendix S2. Single‐catch traps are a special case for 
which there are not closed‐form expressions for E(n) and E(r).

3.1 | Expected number of individuals detected

The probability an individual is detected at least once follows directly 
as one minus the zero term of a Poisson distribution with parameter 
equal to the hazard aggregated across all times and detectors. This 
quantity depends on location x and, in general, so does density D(x); 
their product represents the contribution of x to the expected number 
of individuals. We obtain the expected number of individuals detected 
at least once by integrating the product across x:

Integration is over all locations in the plane from which an individual 
might be detected. The expected number is the same for all detector 
types in which individuals are detected independently of each other 
(multi‐catch traps and binary or count proximity detectors).

3.2 | Expected number of recaptures

The total number of detections C depends on the detector type, as 
follows. For the simplest case of Poisson counts, logic similar to that 
in the preceding section gives

Data from multi‐catch traps are binary at the level of each animal × oc-
casion, with Bernoulli probability ps = 1 − exp {−Λs(x)}. This leads to the 
overall number of detections:

Data from binary proximity detectors are binary at the level of 
each animal  ×  detector  ×  occasion, with Bernoulli probability 
pks(x) = 1 − exp {−λ(dk(x))}. This leads to the overall number of detections

We define a recapture as any detection other than the first. For 
all detector types the expected number of recaptures is simply 
E(r) = E(C) − E(n).

4  | SAMPLING VARIANCE

The sampling variance of maximum likelihood estimates (MLE) of 
density is routinely estimated from the curvature of the likelihood 
surface evaluated numerically on the log scale at the MLE (Borchers 
& Efford, 2008). Technically, this uses the inverse of the informa-
tion matrix and is theoretically exact for large samples. Sampling 
variance V on the log scale is related to RSE( ̂D) on the natural scale 
by �RSE( ̂D)=

√

exp ( ̂V)−1. V is the more fundamental quantity, but it 
is more intuitive to work with RSE on the natural scale.

4.1 | Required RSE( ̂D)

It is critical that a sampling design should yield enough data to an-
swer the question being asked, i.e. that it will have sufficient sta-
tistical power. We focus on the ratio of population densities in two 
independent surveys. This is an important general case for which 
knowledge of RSE( ̂D) is sufficient to determine power (power esti-
mates for trend across multiple samples must also allow for stochas-
tic variation in the population process).

E(n)=∫
[

1−exp {−Λ(x)}
]

× D(x)dx.

E(C)=∫ Λ(x) × D(x)dx.

E(C)=∫
∑

s

ps(x) × D(x)dx.

E(C)=∫
∑

s

∑

k

pks(x) × D(x)dx.

TA B L E  1   Point detector types for SECR

Detector type secr Royle Data

Single‐catch trap single — Binary animal × occasion, exclusive

Multi‐catch trap multi Multinomial Binary animal × occasion

Binary proximity proximity Bernoulli Binary animal × occasion × detector

Count proximity count Poisson Integer animal × occasion × detector

Notes: ‘secr’ is the name used for the detector type in the software secr (Efford, 2019b). ‘Royle’ is the corresponding model of Royle et al. (2014: 
Chap. 9). Single‐catch traps are ‘exclusive’ in the sense that capture of an animal by one trap excludes the possibility of capture in other traps on the 
same occasion; there is no simple probability model for such data (—).
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The power is a function of the effect size (D2/D1) and the preci-
sion of the estimates, expressed as RSE, assuming log‐normal errors 
in both the initial and final surveys. Formulae for power (1 − prob-
ability of Type II error) are given in Appendix S3. We relate power 
to the precision of the initial estimate RSE( ̂D1). If sampling effort is 
constant and density changes then the expected sample size will 
also change. Specifically, if the population declines then fewer an-
imals will probably be detected in the final survey and the relative 
precision of the estimate will be reduced, lowering the power of any 
comparison. Although this is outside the control of the researcher, it 
is a direct function of the effect size and may be allowed for in the 
power calculation by routinely adjusting RSE for the final survey by 
the factor 

√

D1∕D2 that predicts the change in E(n) and E(r). This is 
the only part of our power analysis that is specific to SECR. Power is 
plotted against effect size for two levels of RSE( ̂D) in Figure 1.

4.2 | Prediction of RSE( ̂D) for novel sampling regimes

Monte Carlo simulation that obtains the MLE for each generated 
dataset is the gold standard for predicting RSE( ̂D). An alternative is 
to numerically estimate the information matrix for each simulated 
dataset at the known parameter values, rather than at their MLE; 
this is substantially faster, but still requires multiple evaluations of 
the likelihood. We suggest a much faster two‐part approximation 
for RSEP( ̂D). Firstly, Poisson variation in n sets a floor to RSEP( ̂D) of 
1∕

√

n (the CV of a Poisson distribution). Secondly, the precision 
of capture–recapture estimates conditional on n varies with the 
number of recaptures. That relationship is direct for the modified 
Lincoln–Petersen closed population estimate: RSE( ̂N)≈1∕

√

E(r) 
(Seber, 1982, p. 60). For Poisson‐distributed n our proposed ap-
proximation is

The corresponding approximation for binomial n in area A is 
rseB=

√

rse2
P
−1∕(DA). The approximation is compared to simulated 

values for some spacing scenarios in Figure 2. Appendix S4 gives de-
tails of these simulations. The approximation was broadly unbiased for 
square grids of binary proximity detectors (Figure 2). Discrepancies 
were greatest in scenarios with inadequate grid size that would in any 
case be rejected for excessive bias, and in scenarios with simulated 
RSEP(

̂D)>20%. The approximation showed a nearly linear convex‐
up relationship with detector spacing for large spacings (E(r)  >  E(n)), 
whereas simulated RSEP( ̂D) was concave‐up over this range (Figure 2, 
Appendix S4, Figure S3a). The approximation underestimated RSEP( ̂D) 
by about 25% when the detector array was linear (Appendix S4). 
Computation of the approximation was more than 200 times faster 
than efficient simulation using the information matrix at known param-
eter values and only 20 replicates (Appendix S4).

5  | SOF T WARE

Software has been developed in R (R Core Team, 2019) to perform 
the preceding calculations and simulation for detectors of com-
mon SECR types in many configurations (r package ‘secrdesign’; 
Efford, 2019b). The R functions may be run interactively in the 
web‐based application ‘secrdesignapp’ (Efford, 2019c). The web‐
based application also enables one‐click simulation to check the 
approximation and estimate an optional correction factor; graphi-
cal outputs include the spatial distribution of detection prob-
ability and interactive plots of statistical power as described in 
Appendix S3.

6  | DISCUSSION

The great majority of published SECR analyses have enough statis-
tical power to detect only gross population differences. The com-
monly cited target of RSE( ̂D)<20% provides an 80% probability of 
rejecting the hypothesis of no difference at p < 0.05 only for decline 
of >64% and increase of >96% in a 2‐sided test (Figure 1, Appendix 
S3). The tools provided here should encourage greater ambition.

Some designs are categorically inappropriate because they are 
poorly matched to the spatial behaviour of the target species and 
result in biased estimates even when the fitted model corresponds 
to the model used to generate the data. We label these designs 
‘pathological’. Pathology is due primarily to inadequate extent of 
the detector array (significantly less than one home range; Efford, 
2011; Sollmann et al., 2012; Tobler & Powell, 2013) or extreme 
detector spacing (leading to few or no spatial recaptures). Non‐
pathological designs give unbiased estimates, but within the set of 
non‐pathological designs the precision achieved for a given sam-
pling effort varies widely. The precision of density estimates from 
a particular sampling design may be predicted from the expected 
sample sizes, which are a deterministic outcome of the design and 
a parameterized model.

(1)rseP(
̂D)=1∕

√

min{E(n), E(r)}.

F I G U R E  1   Power of a two‐sided test (α = 0.05) to detect a 
change in density between two surveys as a function of effect size 
((D2/D1 − 1) × 100 on the x axis) for two levels of precision in the 
initial survey, RSE( ̂D1). Precision of the final estimate is scaled for 
the expected change in sample size RSE( ̂D2)=RSE( ̂D1)

√

D1∕D2. See 
Appendix S3 for calculation
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There is no merit in pathological designs, which invariably also 
yield poor precision. It is therefore desirable, if not strictly neces-
sary, to remove obviously pathological designs from the set under 
consideration. If this is merely a step towards optimizing for preci-
sion then the criteria need not be precise. The bias criterion used 
in our definition is unwieldy because it requires simulation, so we 
suggest using ad hoc criteria. Inadequate extent is likely to cause 
bias when the area or diameter of the array is less than the match-
ing metric of the average home range (references above). Extreme 
detector spacing may be diagnosed from the expected number of 
spatial recaptures (Appendix S2); we suggest rejecting designs for 
which that number is 5 or less (this may also eliminate some designs 
with adequate spacing but inadequate duration or detection rate).

6.1 | Approximation for RSEP( ̂D)

The approximation appears reliable for two‐dimensional designs such 
as grids of binary proximity detectors when RSEP( ̂D)<20% (Figure 2). 
The approximate RSE is compared in Appendix S5 to simulated values 
from the numerous and varied scenarios of Kristensen and Kovach 
(2018) and Clark (2019). Discrepancies were small except in scenar-
ios for which inadequate sample size led to convergence problems 
(Kristensen & Kovach, 2018) or inadequate cluster size caused bias 
(Clark, 2019). SECR methods should not be used with such data.

The approximation is an underestimate when the design is 
linear (Appendix S4, Figure S4) and shows a moderate bias for 
greater‐than‐optimum grid spacings, especially with multi‐catch 
traps (Appendix S4). Future investigation of these and other sys-
tematic deviations between the simulated and approximate RSE 
may lead to an approximation that improves on Equation (1). 
Models with additional detection parameters may sometimes be 
needed to avoid bias due to learned responses, individual het-
erogeneity etc.; some loss of precision is to be expected, espe-
cially when such models are averaged, with correct accounting for 
model uncertainty.

Our results are for a population of animals distributed uniformly 
and independently of each other. Clustering of activity centres or un-
modelled spatial variation in density will result in overdispersion; the 
sampling variance from a uniform Poisson model then underestimates 
the true sampling variance, with flow‐on effects on �RSE( ̂D) and confi-
dence interval coverage. The effect can be severe in highly clustered 
populations, as we illustrate by simulation in Appendix S4. Our approx-
imation takes no account of overdispersion and will underestimate true 
RSE( ̂D), while matching estimates from the incorrect, uniform model. 
If overdispersion is expected at the design stage then a more conser-
vative (lower) target should be set for RSE( ̂D). The potential effect of 
overdispersion on RSE( ̂D) may be assessed by simulating clustered dis-
tributions. Adjustment for overdispersion in SECR models is an import-
ant topic for future research.

Expected sample sizes (n, r) scale directly with density when de-
tections are independent (‘multi’, ‘proximity’ and ‘count’ detectors), 
and rseP consequently scales with 1∕

√

D for these detector types. This 
does not apply exactly for single‐catch traps as trap saturation at high 
density suppresses capture probability and sample size.

6.2 | Optimum detector spacing

One component of Equation (1) is an increasing function of detector 
spacing (E(n)), while the other is a decreasing function (E(r)). This is a 
quantitative description of phenomena that have been well under-
stood at a qualitative level: wide spacing results in few recaptures 
(and especially few movement recaptures), while a fixed number 
of detectors placed close together detects few individuals (e.g. 
Sollmann et al., 2012).

The minimum of rseP occurs when the curves intersect at 
E(n) = E(r) and the ‘average’ animal is detected twice. It is thus easy 
to determine an optimum spacing numerically, assuming that the ap-
proximation is reliable and ignoring external factors such as travel 
costs. Switching to a binomial model for n does not change the opti-
mum spacing, nor does any adjustment by a constant factor.

F I G U R E  2   Approximation for precision of SECR density estimates RSE( ̂D) (solid lines) compared to simulated precision (points) for square 
grids over a range of detector spacings expressed in units of the half‐normal scale of detection, σ. (a) varying grid size, constant sampling 
intensity λ0 = 0.2, (b) constant grid size 10 × 10, varying λ0. Simulated scenarios with relative bias of density estimate >5% marked with white 
×. Density 0.4σ−2, 5 sampling occasions. See Appendix S4 for further details and numerical results. The approximation is reliable for a broad 
range of spacings around the optimum
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The optimal spacing is commonly in the range 1–3 σ for a half‐
normal detection function with scale parameter σ, as found by pre-
vious authors (e.g. Clark, 2019; Royle et al., 2017; Sun et al., 2014). 
However, when the sampling intensity is low (low g0 or λ0, few sam-
pling occasions, or linear configuration) the optimal spacing may be 
less than σ (Figure 2b) as also noted by Kristensen and Kovach (2018). 
Some authors (e.g. Otis, Burnham, White, & Anderson, 1978) have 
suggested aiming for a certain number of detectors per home range, 
but this ignores the effect of sampling intensity on optimal spacing.

6.3 | Clustered detectors

Modular sampling with small clusters of detectors is an effective 
option for representative sampling of a large region (Clark, 2019; 
Efford & Fewster, 2013; Efford et al., 2005; Sun et al., 2014). The 
optimum within‐cluster spacing for a collection of similar clusters 
is the same as for one cluster as long as clusters are independ-
ent (widely spaced). As a result, (a) E(n) and E(r) both scale with 
the number of clusters, (b) the within‐cluster spacing at which 
E(n) = E(r) does not change, and (c) rseP scales with 1∕

√

c where c is 
the number of clusters. For a given cluster size with cluster‐level 
precision RSEP( ̂D1), the precision for an estimate of density D in a 
specified region with area A is RSEB( ̂D)≈

√

RSEP(
̂D1)

2∕c−1∕(DA), al-
lowing c to be chosen to yield the required precision. Each cluster 
should be large enough to span a home range to avoid the risk 
of bias. Once that criterion is met, the optimum cluster size for 
a specified total effort is subject to trade‐offs. Many small clus-
ters maximizes E(n) while fewer large clusters maximizes E(r); the 
optimum allocation depends on which is most limiting for preci-
sion, itself a function of density and detection parameters, and 
on travel costs. These factors are study‐specific. The impact of 
cluster number and cluster size on precision and cost may be ex-
plored in software (Efford, 2019b, 2019c) using the approximation 
in Equation (1) to narrow the set of candidate designs, followed by 
simulation for confirmation. We emphasize the need for rigorous 
spatial sampling, such as a random systematic sample of cluster 
locations.
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