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Abstract
Emerging technologies support a new era of applied wildlife research, generating 
data on scales from individuals to populations. Computer vision methods can process 
large datasets generated through image-based techniques by automating the detec-
tion and identification of species and individuals. With the exception of primates, 
however, there are no objective visual methods of individual identification for species 
that lack unique and consistent body markings. We apply deep learning approaches 
of facial recognition using object detection, landmark detection, a similarity compari-
son network, and an support vector machine-based classifier to identify individuals 
in a representative species, the brown bear Ursus arctos. Our open-source applica-
tion, BearID, detects a bear’s face in an image, rotates and extracts the face, creates 
an “embedding” for the face, and uses the embedding to classify the individual. We 
trained and tested the application using labeled images of 132 known individuals col-
lected from British Columbia, Canada, and Alaska, USA. Based on 4,674 images, with 
an 80/20% split for training and testing, respectively, we achieved a facial detection 
(ability to find a face) average precision of 0.98 and an individual classification (ability 
to identify the individual) accuracy of 83.9%. BearID and its annotated source code 
provide a replicable methodology for applying deep learning methods of facial rec-
ognition applicable to many other species that lack distinguishing markings. Further 
analyses of performance should focus on the influence of certain parameters on rec-
ognition accuracy, such as age and body size. Combining BearID with camera trap-
ping could facilitate fine-scale behavioral research such as individual spatiotemporal 
activity patterns, and a cost-effective method of population monitoring through 
mark–recapture studies, with implications for species and landscape conservation 
and management. Applications to practical conservation include identifying problem 
individuals in human–wildlife conflicts, and evaluating the intrapopulation variation 
in efficacy of conservation strategies, such as wildlife crossings.
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1  | INTRODUC TION

Conservation Technology is an emerging field that aims to ad-
dress large-scale conservation challenges with innovative tools. 
With biodiversity conservation a global concern, computa-
tional approaches that enable wildlife monitoring at larger spa-
tial scales, but with finer resolution, are recognized as a priority 
(Arts et al., 2015). Scaling-up biodiversity monitoring (Steenweg 
et al., 2017), however, requires automation of data processing and 
analysis to increase reproducibility, while reducing time, cost, and 
labor (Weinstein, 2018).

Computer vision increasingly supports analyses of big data 
collected from image-based ecological studies (Weinstein, 2015). 
One challenge is the inability to distinguish among individuals 
within species that lack unique markings (Rowcliffe et al., 2008). 
Addressing this gap and taking a similar approach to human in-
dividual identification, face recognition (in various forms) has 
been developed for nonhuman primates (great apes Hominidae 
spp. (Ernst & Küblbeck, 2011; Loos & Pfitzer, 2012; Freytag 
et al., 2016; Schofield et al., 2019), lemurs Lemuroidea spp. (Crouse 
et al., 2017), and macaques Macaca mulatta (Witham, 2018)). For 
species other than primates, one of the only references to facial 
recognition of unmarked species in the peer-reviewed literature 
focuses on domestic dogs Canis familiaris (Moreira et al., 2017). 
Facial recognition approaches could prove useful to the suite of 
nonprimate wildlife species that lack distinctive body markings. 
Knowledge of unique individuals can facilitate the use of estab-
lished techniques such as mark–recapture and thereby inform 
management.

Deep learning techniques automatically detect and extract 
learned features from data, and provide a powerful alternative to 
traditional methods of feature extraction (see Christin et al., 2019 
and Schneider et al., 2019 for ecological applications). Face rec-
ognition using deep learning has recently achieved an accu-
racy of up to 92.5% for chimpanzees Pan troglodytes (Schofield 
et al., 2019) and 96.3% for giant pandas Ailuropoda melanoleuca 
(Chen et al., 2020); the latter possessing distinctive eye patch 
markings that could aid identification. A primary challenge, how-
ever, is that deep learning requires large labeled datasets for train-
ing and testing, which are difficult to acquire for wild populations, 
especially at the individual level (Schneider et al., 2019). Training 
on images of captive individuals offers a useful approach when 
such conditions exist for species of interest, but it is unclear how 
well these networks generalize to images taken of wild individuals 
in situ; controlled environments may provide inadequate training 
data for real-world application (Wearn et al., 2019). Long-term 
individual-based ecological studies of wild populations (sensu 
Clutton-Brock & Sheldon, 2010) provide an alternative and more 
common context that can support image databases collected over 
years. Moreover, variability contained within these images, such 
as fluctuations in body weight, may be more representative of the 
external morphology of wild animals.

Here, we describe our application BearID, which uses deep learn-
ing and facial images to detect and identify individual brown bears 
Ursus arctos, a species that lacks consistent, unique pelage markings. 
Brown bears provide an ideal candidate for expanding facial recog-
nition beyond primates as they present opportunities and challenges 
likely spanning a wide variety of taxa: (a) They vary in morphology 
across their range (Hilderbrand et al., 1999), and (b) they experience 
extreme weight fluctuations between seasons and as they age and 
grow (Kingsley et al., 1983).

Using a programming pipeline of face detection and reorienta-
tion, face encoding, and face classification (Schroff et al., 2015), we 
trained and tested an object detection network, landmark detection 
network, similarity comparison network, and support vector ma-
chine (SVM)-based classifier. We provide the methodological details 
for building the application, as well as our initial results and anno-
tated source code. Although trained on a single species by design, 
BearID is transferable to other mammals and certain parts of the 
pipeline may be particularly transferable to other caniforms due to 
facial similarities. Given the number of species and the broad terres-
trial and marine distribution of this important suborder of Carnivora, 
the frequency with which representative populations are studied, 
the expense of current identification methods (e.g., genetic tagging), 
and their relative ease of photographing, they comprise a well-suited 
study system for this approach. BearID thereby provides an import-
ant step in applying deep learning methods of facial recognition 
to a variety of wild animals beyond primates that lack distinctive 
markings.

2  | METHODS

2.1 | Data collection

Images were collected in Knight Inlet, British Columbia, Canada (N 
50°41′ W 125°44′) and Brooks River, Katmai National Park, Alaska, 
USA (N 58°33′ W 155°47′). Both sites have ongoing research and 
established bear-viewing ecotourism. Images were collected for re-
search purposes at Knight Inlet (by M Clapham and naturalists) and 
sourced post hoc from National Parks Service staff and seven inde-
pendent photographers at Brooks River. Identifications of unique 
bears were provided by the collectors and represented unambigu-
ously known individuals to each area, assessed by visual appearance 
and life history knowledge of individuals observed daily throughout 
seasons and years. All images were taken with DSLR cameras (vari-
ous models and focal lengths), other than 19 images from Knight Inlet 
taken using Reconyx camera traps (PC85 Rapidfire Pro). These pro-
vided images of individuals not frequently observed (see Clapham 
et al., 2012). Resolution ranged from 0.3 to 24.1 megapixels. One 
image was in PNG and the rest JPEG format.

We collected 4,675 images of 132 individuals (median = 22 im-
ages/individual [range 1–242]) with visible faces (criteria: both eyes 
visible) taken May–October 2009–2017 (Table 1). Individuals were 
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captured in successive years, across seasons within a year, and under 
varying light conditions (Figure 1).

2.2 | Application pipeline

Following the FaceNet approach (Schroff et al., 2015), our pipeline 
consisted of: (a) Face detection, (b) Face reorientation and cropping, 
(c) Face encoding (embedding), and (d) Face classification. We cre-
ated separate C++ applications using the Dlib-ml toolkit (King, 2009) 
for each step of the pipeline: (a) bearface, (b) bearchip, (c) bearembed, 
and (d) bearsvm. For end-to-end inferencing from photographs to 
identifications, we created a single Python script, bearid (Figure 2). 

We followed Dlib’s deep learning example programs to provide an 
outline for building bearface, bearembed, and bearsvm (see Data 
Accessibility).

To develop BearID, we custom-built a computer system with a 
graphics processing unit capable of deep learning by providing par-
allel computing (see Appendix S1 for hardware details). We primarily 
used Python and C++ (below; Data Accessibility).

2.3 | Training and test data

From 4,675 images, we created a fully labeled “golden dataset” that 
included a bounding box for each face, the locations of landmarks, 

Dataset Years
Number of face images 
(face chips)

Number of individuals 
(with face chips)

Knight Inlet, BC 2009–2017 1,297 59

Brooks River, AK 2014–2017 3,378 73

Total 4,675 132

TA B L E  1   Summary of datasets 
collected and faces extracted

F I G U R E  1   Variation among and 
within four individual brown bears (a–d). 
Images (face chips) display examples 
of the variation in pose, lighting, and 
photograph quality in the dataset. A is a 
subadult female, b and c are adult males, 
and d is an adult female. a, c, and d include 
images taken over successive years. Face 
chips were produced using bearface and 
bearchip applications

(a) (b)

(c) (d)

F I G U R E  2   Schematic of BearID 
pipeline including programming languages 
and file formats (input image, detect face, 
crop and rotate face, create embedding 
for face, match embedding, classification 
of image, output individual ID “Toffee”)
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and identification of each bear (see Appendix S2 for details). We ran-
domly split the golden dataset into 3,740 (80%) images for training 
and 935 (20%) for testing using a Python script, generate_partition.py. 
One image had to be removed from the test split due to an incorrect 
label, for a total of 934 images in the test set. We used the data splits 
to train and test the various networks in our application (below).

For face detection, we scaled the resolution of all training and 
test images down to 2,000 × 1,500 pixels to avoid overloading our 
hardware. For the test set, if scaling caused a face to become too 
small (<200 × 200 pixels), we scaled until the face was 200 × 200 
pixels and then cropped the overall image to 2,000 × 1,500 pixels 
(examples: Photographs S1 and S2).

2.4 | Face detection

Bearface finds faces and landmarks (eyes, tip of the nose, ears, and 
top of the forehead) in images. It consists of two networks: an ob-
ject detector (OD) and a shape predictor (SP). The OD uses a sliding 
window (Dalal & Triggs, 2005) and a convolutional neural network 
(CNN) trained with Dlib’s max-margin object detection loss function 
(King, 2015). We selected this approach as Dlib’s example model 
trained on domestic dogs performed sufficiently to expedite labeling 
for the golden dataset (see Appendix S2). The CNN was trained using 
the bounding box labels in the golden dataset (see Appendix S3 for 
training procedure). The SP uses Dlib’s implementation of face align-
ment with an ensemble of regression trees (Kazemi & Sullivan, 2014) 
and was trained using the landmark labels in the golden dataset. The 
bearface application takes as input: an image file or list of images as 
an XML file and a network weights file. JPEG and PNG are both ac-
cepted as input file types, but raw or other format images would first 
need to be manually converted. It outputs an XML file with a list of 
images and corresponding face and landmark information.

2.5 | Face reorientation and cropping

This stage uses the facial landmarks in the XML created by bear-
face to reorientate and extract the bear faces (or “chips”: Schroff 
et al., 2015). The application, bearchip, centers and rotates the face 

to optimal orientation. The current implementation uses only the 
eyes to align and center images (Table S1). It then scales and crops 
(150 × 150 pixels) the faces and writes each face chip as a JPEG file 
(Figure 3).

2.6 | Face encoding

Face encoding forms the core process that facilitates facial recogni-
tion in the pipeline. It uses a similarity metric (Schneider et al., 2020) 
to learn a function that maps an input image (bear face chip) into 
a target space (Chopra et al., 2005). The metric loss function (Dlib 
toolkit: King, 2009) drives the similarity metric to be small for face 
chips of the same bear and large for face chips from different bears. 
The output is an embedding, which is a numeric vector representa-
tion of a facial image that can be compared to other embeddings to 
identify individuals using a face classifier (below).

For the implementation, bearembed, we trained a similarity com-
parison network using a deep CNN with a ResNet-34 architecture 
(He et al., 2016), following the Dlib example “deep face recogni-
tion” implementation (King, 2009), to produce a 128-dimensional 
Euclidean embedding per face chip image (Schroff et al., 2015). The 
bearembed application has three modes: training, testing, and em-
bedding. To generate the face chip training data, we used bearface 
on the training portion of the golden dataset. For metric learning, 
we used pairwise hinge loss, rather than triplet loss (as in Schroff 
et al., 2015), implemented by the Dlib metric loss layer. We used hard 
negative mining to ensure a balanced ratio within mini-batches of 
positive (same individual) and negative (different individuals) pairs 
from the training data (see Appendix S4 for training procedure). 
We augmented the training dataset by applying color perturba-
tion and jittering each time a face chip was included in a mini-batch 
(Appendix S4). Bearembed can be used with the trained network for 
testing or to generate embeddings for a set of chips.

2.7 | Face classification

Face classification is the process of assigning an individual ID label to 
an embedding created by bearembed, from an existing dataset. We 

F I G U R E  3   Automated face detection 
and extraction using bearface and bearchip 
applications. The resulting JPEG (face 
chip) provides input for the recognition 
networks forming the identification 
component of BearID. The middle image is 
cropped for figure clarity only
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used a one-versus-one classifier using a linear SVM following the 
Dlib “multiclass classification” example to develop the application, 
bearsvm. We used the embeddings and labels from the chips in the 
training set to train the SVM. Once trained, bearsvm can be used to 
test the SVM or generate a classification of a bear face embedding 
(i.e., identify an individual).

2.8 | Full application

The full BearID application was implemented as a python script, 
bearid.py. It takes a directory of images as the input. It executes imglab 
(image annotation tool: King, 2009) to create an XML file containing 
all the images in the directory, executes bearface to find bear faces, 
executes bearchip to create face chips, executes bearembed to create 
embeddings, and executes bearsvm to determine each bear identifi-
cation. The output is an XML file with the original list of files, bound-
ing boxes for the faces and the bear identification. The XML file can 
be read into imglab to review the annotations provided by bearid.py.

2.9 | Testing methodology

We initially tested subapplications (bearface, bearembed, bearsvm) 
independently to gain an accurate representation of performance 
using the golden dataset. We then tested the full application from 
input image to ID classification to assess cumulative error on clas-
sification accuracy. We focus on subapplication results as our focal 
measures of performance.

2.9.1 | Face detection

The OD and SP were analyzed separately for the bearface applica-
tion. We evaluated the OD using precision, recall, and interpolated 
average precision with an intersection over union at 0.5 of all pre-
dicted faces compared to those in the test split of the golden data-
set (n = 934; Table 2). Precision can be considered as: if a face was 
detected, how often was it a face; recall can be considered as: how 
many faces were detected, out of all the faces present; and average 

precision as the area under the curve of the precision–recall curve, 
the latter comprising a key performance metric. We evaluated the 
SP by finding the distance between the predicted landmarks and 
those in the test split (Table 2). We normalized the distance for each 
landmark by scaling by the interocular distance. We report the mean 
normalized distances of all landmarks across all faces (Table 2).

2.9.2 | Face encoding

Bearembed was evaluated based on the “Labeled Faces in the Wild 
method” (Huang et al., 2007). We used k-fold cross-validation (k = 5) 
on the golden dataset, where each training fold contained 935 bear 
chips, and the test fold contained 934. Five different networks were 
trained using all combinations of 4 of 5-folds (giving a training set of 
935*4 = 3,740), then tested against the remaining fold for each net-
work (934). For a fold, we created 3,000 unique matching pairs (same 
individual) and 3,000 unique nonmatching pairs (different individuals) 
from the 934 test chips for each fold using a python script, generate_
pairs.py. The number of unique pairs (3,000) approximated the number 
of positive pair combinations, n choose r (r = 2), which can be created 
from the average number of chips per ID label (n = 8.12) multiplied by 
the number of ID labels (m = 115) in the test set. This can be written as:

We ensured each fold had an even number of positive and negative 
examples, a given face image was never compared with itself, and 
all tested pairs were unique (positives and negatives). We estimated 
accuracy as:

We split the folds by the following: (1) face chip (randomly shuf-
fling chips then splitting them evenly across the 5-folds, resulting in 
a similar distribution of individuals and face chips across each fold 
and the same individuals appeared in both the training and test data 
[“closed set”: Deb et al., 2018]) and (2) ID label (randomly assigning 
each ID label to 1 of the 5-folds [Huang et al., 2007], resulting in dif-
ferent individuals in each test set compared with its corresponding 
training set) to compare results. We tested by ID label to assess the 
performance of bearembed in creating embeddings for new individu-
als not previously used in training.

3  | RESULTS

3.1 | Face detection and reorientation

The OD attained an average precision of 0.977 (Table 2). The mean 
normalized distance between predicted and ground-truthed facial 

n!

r!(n− r)!
×m=

8!

2!(8−2)!
×115=28×115=3, 220

(truepositiverate(TPR)×positiveratio)+

(truenegativerate (TNR)×negativeratio)= (TPR×0.5)+ (TNR×0.5).

TA B L E  2   Testing results for the object detector and shape 
predictor that comprise bearface

Test method Result

Precision (OD) 0.986

Recall (OD) 0.983

Average precision, IoU@0.5 (OD) 0.977

Mean normalized distance (SP) 0.111 ± 0.122

Note: Average precision calculated as area under the curve of 
the precision–recall curve with interpolated precision and an IoU 
(intersection over union) at 0.5. OD is object detector, and SP is shape 
predictor ± standard deviation.
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landmarks was 0.111 ± 0.122 (SP; Table 2). Detection errors included 
misalignments, additional erroneous faces, and missed detections 
(examples: Photographs S3–S5). Bearchip is a mathematical opera-
tion and therefore cannot be evaluated (i.e., all detected faces were 
extracted). The parameters for bearchip (Methods) could be consid-
ered hyperparameters for bearembed.

3.2 | Face encoding and classification

Bearembed had predictive utility when classifying between matched 
(same individual) and unmatched (different individuals) pairs 
(Figure 4). The error for the training data was nominal (Figure S1), 
which could indicate overfitting (the network learns to distinguish 
the specific training images rather than something more general). 
Higher accuracy occurred when splitting data by face chip, rather 
than ID label (Table 3). For visualization purposes, we created a sub-
set of bears (n = 16: Knight Inlet) with > 3 images per bear. The re-
sulting embeddings created by bearembed showed variation among 
and within individuals; images of some individuals were consistently 
clustered, whereas others were clustered with images of multiple 
individuals (Figure 5).

Using bearsvm, an ID prediction was made for each embedding 
in the golden dataset test split (934). Accuracy was determined by 
dividing the number of correct predictions (according to the ground-
truthed ID labels) by the total number of predictions. Two bears had 
single embeddings in the test set but none in the training set, so they 
could not be classified. Of the remaining 932 embeddings, bearsvm 
produced 782 correct predictions, yielding an accuracy of 83.9%. A 
confusion matrix was generated to further investigate classification 
performance by indicating which bears were confused when ID pre-
dictions were made among 16 individuals using bearsvm (Table 4). 
Classification performance varied in a similar way to embedding 

performance (Figure 5); some individuals were consistently identi-
fied accurately, whereas others were more likely to be confused with 
other bears (Table 4).

3.3 | Initial testing of the full application

We evaluated the full application, BearID, to assess the cumulative 
effects of subapplication error on overall identification accuracy 
(i.e., the effect of errors/imprecision in facial detection on individual 
classification). We ran 934 test images through the bearid script to 
receive an ID classification for each image in which a face was de-
tected (n = 929; Table 5). Two images of bears not represented in the 
training set were disregarded for the bearsvm and final bearid results. 
The overall accuracy for the full BearID pipeline was only slightly 
reduced (82.4%; Table 5) compared to when the classifier (bearsvm) 
was tested independently on the golden dataset (83.9%).

3.4 | Transferability to other 
populations and species

The current version of BearID (20.05) can be used as an end-to-end 
application to collectively: (a) find a bear face and facial landmarks 
in an image; (b) extract and reorientate the face; (c) create a vector 

F I G U R E  4   ROC curve displaying the probabilities of predicting 
matching or nonmatching pairs (the same individuals or different 
individuals) under different thresholds using the face encoder 
bearembed

TA B L E  3   Testing results for our face encoder bearembed using 
two methods of 5-fold validation

Test method Accuracy (%) ± SD

1. Face chip 84.2 ± 0.008

2. ID label 71.3 ± 0.024

Abbreviation: SD, standard deviation.

F I G U R E  5   t-SNE plot projecting 128D embeddings created 
using bearembed into 2D, for a subset of 16 individual bears. Each 
datapoint represents an embedding for a face chip; colors and 
shapes represent individuals. Perplexity = 5; learning rate = 10; 
iterations = 2,000; n = 125 embeddings (datapoints)
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embedding for the face; and (d) use that embedding to identify the 
face from a database of known individuals. Subapplications can also 
be used as follows: bearface (face detector) can be used on brown 
bears and likely other bear species and other caniforms, due to mor-
phological similarities, to detect faces and find facial landmarks in 
images. Bearface may facilitate facial detection in other species with-
out species-specific retraining, but has not yet been systematically 
tested; bearchip uses parameters optimized on brown bear faces 
and therefore may need adjustments for other species. Using data 
from bearface it produces a “face chip” needed by the face encoder; 
bearembed (face encoder) requires the "face chip" to create vector 
embeddings to test matching/nonmatching pairs of images. It can be 
used on brown bear individuals not currently in the dataset, but may 
have lower accuracy (see “by ID label” embedding results). It has not 
been tested on other species; bearsvm (classifier) compares embed-
dings to those already in a database to return a matching ID label and 
therefore can only be used for brown bears in the current dataset, 
requiring training on specific known individuals.

Although not designed primarily for this function, BearID can be 
used to conduct face verification (Deb et al., 2018) for “unknown” 
brown bears by running images through bearface and bearchip, using 
the embedding mode of bearembed to create embeddings for the 
images, and then the test mode of bearembed to test between the 
images. Results will indicate if the bears in the images are matching 
(same individual) or nonmatching (different individuals). Accuracy 
will be 71.3% [“ID label” accuracy] or possibly lower due to potential 
regional differences in morphology, as the network has only been 
trained on bears from two populations.

4  | DISCUSSION

Our BearID pipeline provides a foundation for accurately applying 
deep learning methods of facial recognition beyond primates. Our 
trained face detector (ability to find a face) achieved an average pre-
cision of 97.7% without a strict criterion on facial pose, other than 

both eyes visible, which demonstrates the flexibility required for use 
on wild populations. Brust et al. (2017) estimated a similar average 
precision value (90.8%) for their detector of wild gorilla (Gorilla go-
rilla) faces. Testing our face detector on camera trap images would 
further enhance its use in ecological research and monitoring.

Our results suggest that our trained face encoder, bearembed, 
performed better when matching new images of known individuals, 
compared to matching images of new individuals. Testing bearembed 
revealed an accuracy of 84% when randomly selecting new images 
per known individual and 71% when assigning bears as training or 
testing individuals. We tested this latter mode to examine how our 
network would perform creating embeddings for bears not previ-
ously “seen,” which is relevant to ecological application (Schneider 
et al., 2020). Retraining a classifier to include an option to designate 
new individuals (sensu Deb et al., 2018) would further support the 
automated use of this software in wildlife research and monitoring. 
At present, new individuals must be added manually to the training 
dataset.

Our current classifier (bearsvm; ability to identify the individual) 
returned an identification accuracy of 83.9%. This result is within 
the range of values from other studies using CNNs for facial rec-
ognition of nonhuman primates (gorillas: 62.4% Brust et al., 2017; 
chimpanzees: 92.5% Schofield et al., 2019; lemurs: 93.8% Deb 
et al., 2018; and golden monkeys Cercopithecus mitis kandti: 90.4% 
Deb et al., 2018). Increasing the number of individuals in training 
datasets should increase accuracy (Brust et al., 2017) and resolve 
overfitting.

Images of the same individuals across years should result in a 
more robust identification network (Schofield et al., 2019), but could 
reduce accuracy (e.g., in humans: Rashmi et al., 2017). Further in-
vestigation of the influence of aging and weight gain on facial bio-
metrics of species is needed for increased inference (insights into 
deep learning: Miao et al., 2019). These changes could also explain 
why some individuals were more consistently recognized than oth-
ers. In addition, images of wild animals include variation in image 
quality due to distance from the focal animal, background, lighting, 

Application Task Input Results
Accuracy 
(%)

Bearface Face and 
landmark 
detection

934 (source 
images)

929 (correct 
faces)a 

99.5b 

Bearsvm ID classification 931 
(embeddings)a 

768 (correct ID) 82.5c 

Bearid (full pipeline) Face and 
landmark 
detection + ID 
classification

932 (source 
images)

768 (correct ID) 82.4

 aAn extraerroneous face was detected in two files for a total of 931 faces. 
 bDetection accuracy refers to the percentage of faces correctly detected (not how well the 
detection matches the ground truth; AP: Table 2).  
 cAccuracy of classifications from source images varies compared to when bearsvm was tested on 
the golden dataset (above). 

TA B L E  5   Evaluating the impact of 
detection (bearface) and classification 
(bearsvm) error on full pipeline accuracy
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and pose. Using CNNs, Freytag et al. (2016) found lower accuracy 
for wild (77%) compared to captive chimpanzees (92%). Assessing 
the parameters that contribute to an “optimal facial image” and the 
impact of changes in facial appearance (e.g., facial trauma) could in-
crease both the detection and recognition accuracy in future studies.

Whereas methods of pattern recognition applied to individual ID 
are well established (see Kühl & Burghardt, 2013), most mammals 
do not possess stable, unique markings. This inability to identify in-
dividuals objectively can restrict scientific inquiry and limit meth-
ods. BearID thus provides an important step in harnessing facial 
recognition techniques to address a broad spectrum of ecological 
questions that require individual ID, from fine-scale behavior (e.g., 
individual activity patterns: Hertel et al., 2017) to landscape-level 
population assessments (e.g., spatial mark–recapture using camera 
traps). We also see potential for this technology within conservation 
practice, such as to identify problem individuals in human–wildlife 
conflicts (see Swan et al., 2017) and to evaluate intrapopulation vari-
ation in efficacy of conservation strategies such as the use of wildlife 
crossing structures (e.g., Dexter et al., 2018), with implications for 
connectivity.

BearID may require additional species-specific training for 
other taxa, but our pipeline provides an open-source and replicable 
method as a foundation for discovery more broadly.

ACKNOWLEDG MENTS
Data collection adhered to ethical standards involving wild ani-
mals in accordance with the University of Victoria Animal Care 
Committee (2014-031(1-3)). This project was supported by a 
Collaborative Research and Development grant from the Natural 
Sciences and Engineering Research Council of Canada (NSERC), with 
financial support from two industrial partners (Knight Inlet Lodge 
and Wild Bear Lodge) (523329-18). We also thank these tourism op-
erators and their staff for field support and in-kind contributions, 
as well as all photograph donors, especially Katmai National Park 
Bear Monitoring Program, Mike Fitz, David Kopshever, and Anela 
Ramos. We thank and are grateful to the Da'naxda'xw Awaetlala 
First Nation for permitting this research in their traditional territory. 
Special thanks to Stephanie O'Donnell and WILDLABS for facilitat-
ing our collaboration.

CONFLIC T OF INTERE S T
The author(s) declare no competing interests.

AUTHOR CONTRIBUTION
Melanie Clapham: Conceptualization (equal); Data curation (equal); 
Funding acquisition (lead); Investigation (equal); Methodology 
(supporting); Project administration (lead); Visualization (equal); 
Writing-original draft (equal); Writing-review & editing (lead). Ed 
Miller: Conceptualization (equal); Data curation (equal); Formal 
analysis (equal); Funding acquisition (supporting); Investigation 
(equal); Methodology (lead); Resources (lead); Software (lead); 
Validation (equal); Visualization (equal); Writing-original draft 
(equal); Writing-review & editing (supporting). Mary Nguyen: 

Conceptualization (equal); Data curation (equal); Formal analysis 
(equal); Investigation (equal); Methodology (lead); Resources (lead); 
Software (lead); Validation (equal); Visualization (equal); Writing-
original draft (equal); Writing-review & editing (supporting). Chris 
Darimont: Conceptualization (supporting); Funding acquisition 
(lead); Supervision (lead); Validation (supporting); Writing-original 
draft (supporting); Writing-review & editing (equal).

DATA AVAIL ABILIT Y S TATEMENT
BearID is an open-source application available on GitHub at https://
github.com/hypra ptive/ bearid (version 20.05). The pretrained mod-
els are available at https://github.com/hypra ptive/ beari d-models 
(version 20.05). The code and models are both also archived at 
https://doi.org/10.5281/zenodo.4014233. Owing to file sizes and 
copyright licenses, raw images will only be available upon request 
to the authors.

The open-source Dlib toolkit that we used to build applica-
tions can be downloaded at http://dlib.net/files/ dlib-19.7.tar.bz2. 
Dlib’s “max-margin object detection” example program can be ac-
cessed at http://dlib.net/dnn_mmod_ex.cpp.html. Dlib’s “deep face 
recognition” example program can be accessed at http://dlib.net/
dnn_face_recog nition_ex.cpp.html. Dlib’s “multiclass classification” 
example program can be accessed at http://dlib.net/multi class_class 
ifica tion_ex.cpp.html.

ORCID
Melanie Clapham  https://orcid.org/0000-0001-8924-7293 
Chris T. Darimont  https://orcid.org/0000-0002-2799-6894 

R E FE R E N C E S
Arts, K., van der Wal, R., & Adams, W. M. (2015). Digital technology 

and the conservation of nature. Ambio, 44, 661–673. https://doi.
org/10.1007/s1328 0-015-0705-1

Brust, C. A., Burghardt, T., Groenenberg, M., Käding, C., Kühl, H. S., 
Manguette, M. L., & Denzler, J. (2017). Towards automated visual 
monitoring of individual gorillas in the wild. In Proceedings – 2017 IEEE 
International Conference on Computer Vision Workshops, ICCVW 
2017 (pp. 2820–2830). https://doi.org/10.1109/ICCVW.2017.333.

Chen, P., Swarup, P., Matkowski, W. M., Kong, A. W. K., Han, S., Zhang, 
Z., & Rong, H. (2020). A study on giant panda recognition based on 
images of a large proportion of captive pandas. Ecology and Evolution, 
10(7), 3561–3573. https://doi.org/10.1002/ece3.6152

Chopra, S., Hadsell, R., & LeCun, Y. (2005). Learning a similarity metric 
discriminatively, with application to face verification. In Proceedings – 
2005 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, CVPR 2005 (Vol. I, pp. 539–546). https://doi.
org/10.1109/CVPR.2005.202.

Christin, S., Hervet, É., & Lecomte, N. (2019). Applications for deep learn-
ing in ecology. Methods in Ecology and Evolution, 10(10), 1632–1644. 
https://doi.org/10.1111/2041-210X.13256

Clapham, M., Nevin, O. T., Ramsey, A. D., & Rosell, F. (2012). A hypo-
thetico-deductive approach to assessing the social function of chem-
ical signalling in a non-territorial solitary carnivore. PLoS One, 7(4), 
e35404. https://doi.org/10.1371/journ al.pone.0035404

Clutton-Brock, T., & Sheldon, B. C. (2010). Individuals and populations: 
The role of long-term, individual-based studies of animals in ecol-
ogy and evolutionary biology. Trends in Ecology and Evolution, 25(10), 
562–573. https://doi.org/10.1016/j.tree.2010.08.002

 20457758, 2020, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.6840, W

iley O
nline L

ibrary on [05/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/hypraptive/bearid
https://github.com/hypraptive/bearid
https://github.com/hypraptive/bearid-models
https://doi.org/10.5281/zenodo.4014233
http://dlib.net/files/dlib-19.7.tar.bz2
http://dlib.net/dnn_mmod_ex.cpp.html
http://dlib.net/dnn_face_recognition_ex.cpp.html
http://dlib.net/dnn_face_recognition_ex.cpp.html
http://dlib.net/multiclass_classification_ex.cpp.html
http://dlib.net/multiclass_classification_ex.cpp.html
https://orcid.org/0000-0001-8924-7293
https://orcid.org/0000-0001-8924-7293
https://orcid.org/0000-0002-2799-6894
https://orcid.org/0000-0002-2799-6894
https://doi.org/10.1007/s13280-015-0705-1
https://doi.org/10.1007/s13280-015-0705-1
https://doi.org/10.1109/ICCVW.2017.333
https://doi.org/10.1002/ece3.6152
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.1371/journal.pone.0035404
https://doi.org/10.1016/j.tree.2010.08.002


12892  |     CLAPHAM et AL.

Crouse, D., Jacobs, R. L., Richardson, Z., Klum, S., Jain, A., Baden, A. L., 
& Tecot, S. R. (2017). LemurFaceID: A face recognition system to fa-
cilitate individual identification of lemurs. BMC Zoology, 2(1), 1–14. 
https://doi.org/10.1186/s4085 0-016-0011-9

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human 
detection. In 2005 IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition (CVPR’05) (Vol. 1, pp. 886–893). 
https://doi.org/10.1109/CVPR.2005.177.

Deb, D., Wiper, S., Gong, S., Shi, Y., Tymoszek, C., Fletcher, A., & Jain, 
A. K. (2018). Face recognition: Primates in the wild. In 2018 IEEE 
9th International Conference on Biometrics Theory, Applications 
and Systems, BTAS 2018 (pp. 1–10). https://doi.org/10.1109/
BTAS.2018.8698538.

Dexter, C. E., Appleby, R. G., Scott, J., Edgar, J. P., & Jones, D. N. (2018). 
Individuals matter: Predicting koala road crossing behaviour in 
south-east Queensland. Australian Mammalogy, 40(1), 67–75. https://
doi.org/10.1071/AM16043

Ernst, A., & Küblbeck, C. (2011). Fast face detection and species classifica-
tion of African great apes. In 2011 8th IEEE International Conference 
on Advanced Video and Signal Based Surveillance, AVSS 2011 (pp. 
279–284). https://doi.org/10.1109/AVSS.2011.6027337.

Freytag, A., Rodner, E., Simon, M., Loos, A., Kühl, H. S., & Denzler, J. 
(2016). Chimpanzee faces in the wild: Log-euclidean CNNs for pre-
dicting identities and attributes of primates. In B. Rosenhahn, & B. 
Andres (Eds.), Pattern Recognition. GCPR 2016. Lecture Notes in 
Computer Science (Vol. 9796, pp. 51–63). : Springer. https://doi.
org/10.1007/978-3-319-45886 -1_5.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image 
recognition. In Proceedings of the IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition (pp. 770–778). https://
doi.org/10.1109/CVPR.2016.90

Hertel, A. G., Swenson, J. E., & Bischof, R. (2017). A case for considering 
individual variation in diel activity patterns. Behavioral Ecology, 28(6), 
1524–1531. https://doi.org/10.1093/behec o/arx122

Hilderbrand, G. V., Schwartz, C. C., Robbins, C. T., Jacoby, M. E., Hanley, 
T. A., Arthur, S. M., & Servheen, C. (1999). The importance of meat, 
particularly salmon, to body size, population productivity, and 
conservation of North American brown bears. Canadian Journal of 
Zoology, 77(1), 132–138. https://doi.org/10.1139/z98-195

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled 
faces in the wild: A database for studying face recognition in uncon-
strained environments. Retrieved from http://vis-www.cs.umass.edu/
lfw/lfw.pdf.

Kazemi, V., & Sullivan, J. (2014). One millisecond face alignment with an 
ensemble of regression trees. In 2014 IEEE Conference on Computer 
Vision and Pattern Recognition (pp. 1867–1874). https://doi.
org/10.1109/CVPR.2014.241

King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine 
Learning Research, 10, 1755–1758.

King, D. E. (2015). Max-margin object detection. ArXiv, 1502.00046. 
Retrieved from http://arxiv.org/abs/1502.00046.

Kingsley, M. C. S., Nagy, J. A., & Russell, R. H. (1983). Patterns of weight 
gain and loss for grizzly bears in Northern Canada. Bears: Their Biology 
and Management, 5, 322–327. https://doi.org/10.2307/3872535

Kühl, H. S., & Burghardt, T. (2013). Animal biometrics: Quantifying and 
detecting phenotypic appearance. Trends in Ecology and Evolution, 
28(7), 432–441. https://doi.org/10.1016/j.tree.2013.02.013

Loos, A., & Pfitzer, M. (2012). Towards automated visual identification of 
primates using face recognition. In 19th International Conference on 
Systems, Signals and Image Processing (IWSSIP) (pp. 11–13).

Miao, Z., Gaynor, K. M., Wang, J., Liu, Z., Muellerklein, O., Norouzzadeh, 
M. S., McInturff, A., Bowie, R. C. K., Nathan, R., Yu, S. X., & Getz, W. 
M. (2019). Insights and approaches using deep learning to classify 
wildlife. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s4159 
8-019-44565 -w

Moreira, T. P., Perez, M. L., Werneck, R. D. O., & Valle, E. (2017). Where is 
my puppy? Retrieving lost dogs by facial features. Multimedia Tools and 
Applications, 76(14), 15325–15340. https://doi.org/10.1007/s1104 
2-016-3824-1

Rashmi, P., Begaum, S., & Kishore, B. R. (2017). Review on face recogni-
tion across age progression. International Journal of Recent Trends in 
Engineering and Research, 3(5), 207–215. https://doi.org/10.23883/ 
IJRTER.2017.3215.TXUQG

Rowcliffe, J. M., Field, J., Turvey, S. T., & Carbone, C. (2008). Estimating 
animal density using camera traps without the need for individual 
recognition. Journal of Applied Ecology, 45, 1228–1236. https://doi.or
g/10.1111/j.1365-2664.2008.0

Schneider, S., Taylor, G. W., & Kremer, S. C. (2020). Similarity learning net-
works for animal individual re-identification – beyond the capabilities of 
a human observer. In Proceedings - 2020 IEEE Winter Conference on 
Applications of Computer Vision Workshops (pp. 44–52). https://doi.
org/10.1109/WACVW 50321.2020.9096925

Schneider, S., Taylor, G. W., Linquist, S., & Kremer, S. C. (2019). Past, pres-
ent and future approaches using computer vision for animal re-iden-
tification from camera trap data. Methods in Ecology and Evolution, 
10(4), 461–470. https://doi.org/10.1111/2041-210X.13133

Schofield, D., Nagrani, A., Zisserman, A., Hayashi, M., Matsuzawa, T., 
Biro, D., & Carvalho, S. (2019). Chimpanzee face recognition from 
videos in the wild using deep learning. Science Advances, 5(9), 1–10. 
https://doi.org/10.1126/sciadv.aaw0736

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding 
for face recognition and clustering. In Proceedings of the IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition (pp. 
815–823). https://doi.org/10.1109/CVPR.2015.7298682

Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, 
C., Townsend, S. E., Carbone, C., Rowcliffe, J. M., Whittington, J., 
Brodie, J., Royle, J. A., Switalski, A., Clevenger, A. P., Heim, N., & Rich, 
L. N. (2017). Scaling-up camera traps: Monitoring the planet’s biodi-
versity with networks of remote sensors. Frontiers in Ecology and the 
Environment, 15(1), 26–34. https://doi.org/10.1002/fee.1448

Swan, G. J. F., Redpath, S. M., Bearhop, S., & McDonald, R. A. (2017). 
Ecology of problem individuals and the efficacy of selective wildlife 
management. Trends in Ecology and Evolution, 32(7), 518–530. https://
doi.org/10.1016/j.tree.2017.03.011

Wearn, O. R., Freeman, R., & Jacoby, D. M. P. (2019). Responsible AI for 
conservation. Nature Machine Intelligence, 1(2), 72–73. https://doi.
org/10.1038/s4225 6-019-0022-7

Weinstein, B. G. (2015). MotionMeerkat: Integrating motion video de-
tection and ecological monitoring. Methods in Ecology and Evolution, 
6(3), 357–362. https://doi.org/10.1111/2041-210X.12320

Weinstein, B. G. (2018). A computer vision for animal ecology. Journal of Animal 
Ecology, 87(3), 533–545. https://doi.org/10.1111/1365-2656.12780

Witham, C. L. (2018). Automated face recognition of rhesus ma-
caques. Journal of Neuroscience Methods, 300, 157–165. https://doi.
org/10.1016/j.jneum eth.2017.07.020

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Clapham M, Miller E, Nguyen M, 
Darimont CT. Automated facial recognition for wildlife that 
lack unique markings: A deep learning approach for brown 
bears. Ecol. Evol.2020;10:12883–12892. https://doi.
org/10.1002/ece3.6840

 20457758, 2020, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.6840, W

iley O
nline L

ibrary on [05/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1186/s40850-016-0011-9
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/BTAS.2018.8698538
https://doi.org/10.1109/BTAS.2018.8698538
https://doi.org/10.1071/AM16043
https://doi.org/10.1071/AM16043
https://doi.org/10.1109/AVSS.2011.6027337
https://doi.org/10.1007/978-3-319-45886-1_5
https://doi.org/10.1007/978-3-319-45886-1_5
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1093/beheco/arx122
https://doi.org/10.1139/z98-195
http://vis-www.cs.umass.edu/lfw/lfw.pdf
http://vis-www.cs.umass.edu/lfw/lfw.pdf
https://doi.org/10.1109/CVPR.2014.241
https://doi.org/10.1109/CVPR.2014.241
http://arxiv.org/abs/1502.00046
https://doi.org/10.2307/3872535
https://doi.org/10.1016/j.tree.2013.02.013
https://doi.org/10.1038/s41598-019-44565-w
https://doi.org/10.1038/s41598-019-44565-w
https://doi.org/10.1007/s11042-016-3824-1
https://doi.org/10.1007/s11042-016-3824-1
https://doi.org/10.23883/IJRTER.2017.3215.TXUQG
https://doi.org/10.23883/IJRTER.2017.3215.TXUQG
https://doi.org/10.1111/j.1365-2664.2008.0
https://doi.org/10.1111/j.1365-2664.2008.0
https://doi.org/10.1109/WACVW50321.2020.9096925
https://doi.org/10.1109/WACVW50321.2020.9096925
https://doi.org/10.1111/2041-210X.13133
https://doi.org/10.1126/sciadv.aaw0736
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1002/fee.1448
https://doi.org/10.1016/j.tree.2017.03.011
https://doi.org/10.1016/j.tree.2017.03.011
https://doi.org/10.1038/s42256-019-0022-7
https://doi.org/10.1038/s42256-019-0022-7
https://doi.org/10.1111/2041-210X.12320
https://doi.org/10.1111/1365-2656.12780
https://doi.org/10.1016/j.jneumeth.2017.07.020
https://doi.org/10.1016/j.jneumeth.2017.07.020
https://doi.org/10.1002/ece3.6840
https://doi.org/10.1002/ece3.6840

