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Abstract
Accurate	estimates	of	animal	abundance	are	essential	 for	guiding	effective	manage-
ment,	and	poor	survey	data	can	produce	misleading	inferences.	Aerial	surveys	are	an	
efficient	survey	platform,	capable	of	collecting	wildlife	data	across	large	spatial	extents	
in	short	timeframes.	However,	these	surveys	can	yield	unreliable	data	if	not	carefully	
executed.	Despite	a	long	history	of	aerial	survey	use	in	ecological	research,	problems	
common	to	aerial	surveys	have	not	yet	been	adequately	resolved.	Through	an	exten-
sive	 review	of	 the	aerial	 survey	 literature	over	 the	 last	50	years,	we	evaluated	how	
common	problems	encountered	 in	 the	data	 (including	nondetection,	 counting	error,	
and	species	misidentification)	can	manifest,	the	potential	difficulties	conferred,	and	the	
history	of	how	these	challenges	have	been	addressed.	Additionally,	we	used	a	double-	
observer	case	study	focused	on	waterbird	data	collected	via	aerial	surveys	and	an	on-
line	group	(flock)	counting	quiz	to	explore	the	potential	extent	of	each	challenge	and	
possible	resolutions.	We	found	that	nearly	three	quarters	of	the	aerial	survey	method-
ology	literature	focused	on	accounting	for	nondetection	errors,	while	issues	of	count-
ing	error	and	misidentification	were	less	commonly	addressed.	Through	our	case	study,	
we	demonstrated	how	these	challenges	can	prove	problematic	by	detailing	the	extent	
and	magnitude	of	potential	errors.	Using	our	online	quiz,	we	showed	that	aerial	ob-
servers	typically	undercount	group	size	and	that	the	magnitude	of	counting	errors	in-
creases	with	group	size.	Our	results	illustrate	how	each	issue	can	act	to	bias	inferences,	
highlighting	the	importance	of	considering	individual	methods	for	mitigating	potential	
problems	separately	during	survey	design	and	analysis.	We	synthesized	the	informa-
tion	gained	from	our	analyses	to	evaluate	strategies	for	overcoming	the	challenges	of	
using	aerial	survey	data	to	estimate	wildlife	abundance,	such	as	digital	data	collection	
methods,	pooling	species	records	by	family,	and	ordinal	modeling	using	binned	data.	
Recognizing	conditions	that	can	lead	to	data	collection	errors	and	having	reasonable	
solutions	for	addressing	errors	can	allow	researchers	to	allocate	resources	effectively	
to	mitigate	the	most	significant	challenges	for	obtaining	reliable	aerial	survey	data.
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1  |  INTRODUC TION

Reliable	estimates	of	wildlife	abundance	are	 imperative	 for	under-
standing	 how	 environmental	 variables	 influence	 population	 and	
community	dynamics,	assessing	trends	across	time	and	space,	and	
guiding	 conservation	 and	 management	 decisions	 (Williams	 et	 al.,	
2002).	Most	estimates	of	wildlife	abundance	are	derived	from	sur-
veys	that	collect	count	data	on	target	species	(Elphick,	2008).	These	
surveys	are	typically	designed	to	yield	counts	of	the	species	within	
predefined	sampling	units	for	a	fixed	amount	of	sampling	effort	(e.g.,	
observation	 time,	 travel	 speed)	 to	make	 inferences	 on	 abundance	
across	 a	 study	 region.	 Differing	 sampling	 designs,	 methods,	 and	
analysis	techniques	for	count-	based	surveys	can	vary	in	their	ability	
to	yield	accurate	and	precise	estimates	of	abundance.	Poorly	con-
ducted	surveys	can	produce	data	that	obscure	animal–	environment	
relationships	 or	 introduce	 biases	 into	 inferences	 (Conroy	 et	 al.,	
2008).

For	 species	 that	 occur	 at	 low	 densities	 or	 across	 large	 spatial	
areas,	 aerial	 surveys	 are	 often	 the	most	 efficient	 platform	 to	 col-
lect	observational	count	data	(Caughley,	1977;	Parker	et	al.,	2010).	
Aerial	surveys	typically	consist	of	flight	transects	in	which	observers	
count	individuals	of	the	target	species	along	a	transect	line	or	strip	
or	within	 the	boundaries	of	a	 sampling	plot	 from	a	 fixed-	wing	air-
craft	or	helicopter	(Caughley,	1977;	Jolly,	1969).	Aerial	surveys	have	
a	long	history	in	ecological	research,	starting	with	censuses	of	North	
American	ungulate	populations	in	rugged	and	remote	terrain	in	the	
1940s	(Buechner	et	al.,	1951;	Hunter	&	Yeager,	1949).	Researchers	
have	 long	recognized	the	distinct	advantages	of	aerial	surveys,	 in-
cluding	the	ability	to	rapidly	collect	data	across	large	spatial	extents	
(Keeping	et	al.,	2018;	Lee	&	Bond,	2016).	Comparable	ground-	based	
surveys	can	take	weeks	 to	cover	 the	same	area	 that	an	aerial	 sur-
vey	 can	 cover	 in	 a	matter	 of	 days	 (Keeping	 et	 al.,	 2018).	As	 such,	
systematic	 aerial	 survey	 designs	 can	 be	 more	 cost-	effective	 than	
ground-	based	 surveys	 despite	 aerial	 surveys	 being	 considerably	
more	expensive	per	unit	time	(Keeping	et	al.,	2018;	Khaemba	et	al.,	
2001).	In	remote	environments	or	rugged	terrain,	wildlife	monitoring	
is	often	only	feasible	with	aerial	surveys.	Ground-	based	terrestrial	
surveys	are	typically	limited	to	areas	with	road	systems	or	areas	that	
can	be	safely	traversed	by	foot	(Jachmann,	1991),	while	vessel-	based	
surveys	of	marine	and	aquatic	environments	are	slower-	paced	and	
best	suited	for	remote	regions	far	from	land	(Briggs	et	al.,	1985).	In	
many	 situations,	 aerial	 surveys	 are	 the	 preferred—	and	 sometimes	
only—	method	 for	 data	 collection	 on	wide-	ranging	 species,	 includ-
ing	those	that	occupy	remote	environments	(Conn	et	al.,	2013),	are	
highly	mobile,	or	are	difficult	to	count	from	the	ground	because	of	
body	size,	coloration,	or	cryptic	behaviors	 (Greene	et	al.,	2017).	 In	

addition,	data	from	aerial	surveys	may	be	summarized	into	a	mean-
ingful	 index	of	abundance	for	tracking	changes	 in	species'	popula-
tions	 and	distributions	over	 time	 (Amundson	et	 al.,	 2019;	Chirima	
et	al.,	2012;	Finch	et	al.,	2021;	Obbard	et	al.,	2018).	However,	such	
indices	are	subject	to	biases,	particularly	if	surveys	are	not	standard-
ized	and/or	errors	in	data	collection	are	not	constant	through	time.

While	aerial	surveys	offer	many	benefits,	the	method	also	pres-
ents	 challenges	 for	 high	 quality	 inferences	 on	 species	 abundance.	
Mistakes	 resulting	 from	 imperfect	observer	detection	during	sam-
pling	can	introduce	errors	into	the	data.	As	with	other	survey	types,	
common	manifestations	of	imperfect	detection	in	aerial	surveys	in-
clude:	 nondetection	 (failure	 to	 detect	 an	 individual	 or	 group	 even	
though	 it	 is	 present),	 counting	 error	 (inaccurate	 enumeration	 of	
group	 size),	 and	 species	 misidentification	 (incorrectly	 identifying	
the	species	of	an	individual).	Nondetection	errors	occur	because	an	
individual	that	is	available	to	be	seen	is	missed	or	because	an	indi-
vidual	 is	unavailable	 for	detection	 (e.g.,	 temporarily	outside	of	 the	
survey	unit,	under	vegetation	or	water	and	not	exposed	to	sampling;	
Kéry	&	Schmidt,	2008).	For	example,	ungulates,	such	as	mule	deer	
(Odocoileus hemionus),	can	be	difficult	to	detect	with	aerial	surveys	
in	 certain	 cover	 types	 and	 vegetation	 density	 (Zabransky	 et	 al.,	
2016),	which	can	result	in	a	failure	to	record	all	individuals	on	a	sur-
vey	 transect.	 Counting	 errors	 can	 result	 in	 observers	 either	 over-		
or	 under-	recording	 the	 true	 number	 of	 individuals	 on	 a	 transect.	
Counting	 errors	may	 also	 occur	 as	 a	 product	 of	 species	 behavior	
or	the	survey	platform	itself	(e.g.,	fixed	wing	versus	helicopter	sur-
veys).	Many	species,	including	mid-	sized	marine	mammals,	aggregate	
in	large	numbers	and	are	highly	mobile,	making	it	difficult	to	accu-
rately	enumerate	group	sizes	from	fast	moving	aircraft	(Gerrodette	
et	 al.,	 2019).	Counting	 errors	 are	 often	 treated	 as	 a	 failure	 to	 de-
tect	to	individuals	(i.e.,	as	a	nondetection)	and	common	methods	for	
estimating	nondetection	 (e.g.,	 through	detection	probabilities)	 can	
address	minor	counting	error	 issues.	However,	 such	methods	can-
not	accommodate	severe	counting	errors,	such	as	those	that	might	
occur	when	large	groups	are	encountered.	Species	misidentification	
can	be	a	bi-	directional	issue	if	a	survey	focuses	on	multiple	species,	
resulting	in	an	over-	count	of	one	species	and	an	undercount	of	an-
other.	Although	observers	may	be	able	to	detect	small-	bodied	ani-
mals,	such	as	many	waterbird	species,	they	may	be	difficult,	or	nearly	
impossible,	 to	correctly	 identify	 (Johnston	et	al.,	2015)	due	 to	 the	
speed	of	the	aircraft	and	distance	from	the	observer.

In	this	paper,	we	provide	an	overview	of	the	current	challenges	
to	estimating	species’	abundance	using	aerial	survey	data.	We	re-
viewed	 the	 literature	on	aerial	wildlife	 survey	methods	over	 the	
last	50	years	 to	examine	how	each	major	 issue	manifests	across	
species	 and	 environments.	 Several	 challenges	 of	 using	 aerial	
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survey	data	have	not	been	adequately	discussed	in	the	literature	
despite	 their	 persistence	 in	 aerial	 survey	 data,	 likely	 because	 in	
many	cases,	there	 is	no	obvious	approach	to	adequately	address	
these	 issues.	Often,	 issues	such	as	counting	error	and	misidenti-
fication	are	ignored	during	analyses	of	count	data,	either	because	
researchers	 do	 not	 recognize	 they	 are	 present,	 cannot	 estimate	
the	 magnitude	 of	 errors,	 or	 they	 are	 unable	 to	 account	 for	 the	
errors	 directly	 during	 analysis	 (Clement	 et	 al.,	 2017).	 Thus,	 in	
addition	 to	our	 literature	 review,	we	highlight	how	aerial	 survey	
challenges	can	manifest	using	a	case	study	of	waterbird	aerial	sur-
veys	in	the	Gulf	of	Mexico	and	an	online	quiz	of	aerial	observers.	
The	case	study	data	come	from	an	aerial	survey	that	implemented	
a	double-	observer	method	and	are	therefore	 ideal	to	 investigate	
both	how	errors	can	arise	in	aerial	count	data	and	also	how	they	
might	be	addressed	through	data	analysis.	Additionally,	 issues	of	
misidentification	 and	 counting	 error	 are	 prevalent	 in	 waterbird	
data	due	to	frequent	aggregations	of	multispecies	groups.	The	on-
line	quiz	further	highlights	this	issue	of	counting	error,	particularly	
how	the	magnitude	of	observer	counting	error	changes	as	group	
size	increases.	The	purpose	of	our	review	is	to	provide	clarity	on	
the	possible	errors	that	can	be	introduced	in	aerial	survey	data	but	
are	often	ignored,	guide	researchers	to	reasonable	approaches	to	
ameliorate	ongoing	issues,	and	identify	areas	for	future	research.

2  |  METHODS

2.1  |  Literature review

We	 searched	Web	 of	 Science	 and	 Google	 Scholar	 using	 the	 key	
words:	“aerial	survey*,”	“aerial	wildlife	survey*,”	“aerial	survey	issue*,”	
“aerial	 survey	error*,”	 and	 “aerial	 survey	method*.”	We	 limited	our	
search	to	peer-	reviewed	articles	published	between	1970	and	2020.	
This	cutoff	ensured	a	large	sample	size	through	time	while	also	ex-
cluding	 the	 earliest	 papers	 describing	 methods	 and	 technologies	
that	are	no	longer	relevant.	Our	inclusion	criteria	required	that	the	
article:	(1)	contain	aerial	survey	methodology	for	in-	flight	observer	
surveys,	and	(2)	discuss	the	implications	of	the	methodology	on	the	
accuracy	or	precision	of	count	data	on	subsequent	 inferences.	We	
did	not	include	papers	that	only	reported	results	from	aerial	survey	
work.	In	most	cases,	included	papers	were	methods-	focused,	gener-
ally	on	specific	aspects	of	aerial	survey	design	and	implementation.	
We	inspected	the	titles	and	abstracts	of	all	articles	of	the	first	fifty	
results	returned	by	each	key	word	(n =	5)	from	the	two	search	en-
gines	and	discarded	articles	that	did	not	fit	the	inclusion	criteria.	We	
read	all	papers	that	passed	this	initial	inspection	and	further	refined	
our	collection	based	on	the	inclusion	criteria.	We	also	searched	the	
literature	cited	of	all	articles	that	passed	our	inspection	to	ensure	we	
did	not	overlook	any	critical	literature.	For	each	of	the	articles	that	
met	 the	 inclusion	 criteria,	 we	 identified	 the	major	 issues	 encoun-
tered	and	categorized	the	type	of	issue.	We	also	identified	the	sys-
tem	and	taxa	in	which	the	study	was	conducted,	aircraft	type,	and	
the	sampling	style	or	design	(line	transect,	strip	transect,	systematic	

sampling,	 double	 observer,	 mark-	recapture,	 distance	 sampling;	
Appendix	S1).	Because	our	review	is	a	synthesis	of	the	relevant	lit-
erature	instead	of	a	systematic	review,	all	quantitative	metrics	from	
our	 literature	review	reported	herein	should	be	considered	 indica-
tive	of	general	trends	within	aerial	survey	literature.

Issues	of	 imperfect	detection	are	conflated	 in	the	 literature	be-
cause	 most	 models	 used	 to	 estimate	 abundance	 are	 unable	 to	 si-
multaneously	 parse	multiple	 sources	 of	 observation	 error,	 such	 as	
unobserved	individuals	versus	misidentified	and	miscounted	individ-
uals	(but	see	Clement	et	al.,	2017	for	an	interesting	exception).	For	the	
purposes	of	this	review,	we	distinguish	nondetection,	counting	error,	
and	species	misidentification	as	distinct	issues.	Developing	effective	
mitigation	strategies	for	aerial	survey	methods	requires	understand-
ing	the	different	potential	sources	of	error.	Left	uncorrected,	these	
various	detection	errors	may	act	differentially	to	bias	count	data.

2.2  |  Waterbirds case study

Our	interest	in	aerial	survey	biases	is	motivated	by	planned	analysis	
of	data	generated	by	the	Gulf	of	Mexico	Marine	Assessment	Program	
for	Protected	Species	(GoMMAPPS).	We	used	the	GoMMAPPS	data	
to	examine	the	issues	commonly	encountered	in	aerial	surveys	and	
how	challenges	with	data	analysis	can	be	addressed	in	practice.

The	 GoMMAPPS	 project	 conducted	 aerial	 surveys	 across	 the	
northern	Gulf	 of	Mexico	 to	 identify	 and	 count	 all	 detected	water-
birds	in	the	nearshore	environment	during	approximately	two-	week	
long	 surveys	 in	 summer	 2018	 and	 winter	 2018–	2020.	 We	 ran-
domly	selected	survey	units	 (n =	180	of	5866	units)	 from	the	U.S.	
Environmental	 Protection	 Agency's	 Environmental	Monitoring	 and	
Assessment	Program	(U.S.	EPA	EMAP)	40	sq.	km	hexagon	grid	data-
set	(White	&	U.S.	EPA,	1992)	using	a	generalized	random	tessellation	
stratified	 (GRTS)	 design	 (Stevens	&	Olsen,	 2004)	 that	 covered	 the	
nearshore	environment	(coastline	to	50	nm	offshore)	from	the	Texas-	
Mexico	border	to	the	Florida	Keys	(Figure	1a).	Surveys	of	each	hexa-
gon	occurred	along	three	transects	that	were	parallel	to	each	other,	
with each ~21	km	spanning	the	length	of	the	selected	hexagonal	sur-
vey	unit	and	two	neighboring	units.	We	also	randomized	orientation	
(aircraft	approach	direction)	of	each	of	the	chosen	units.	Observers	
surveyed	the	same	180	40-	km2	hexagonal	units	(or	a	subset	of	these	
due	to	weather	constraints:	winter	2019,	n =	111	and	winter	2020,	
n =	 130)	 in	 each	 survey	 event	 (single	 survey	 season,	 e.g.,	 winter	
2018).	During	surveys,	in-	flight	observers	counted	and	identified	(to	
the	lowest	taxonomic	level)	all	waterbirds	within	a	400	m	strip	tran-
sect	(200	m	on	either	side	of	the	flight	transect;	Figure	1b).	Surveys	
were	flown	at	110	knots	and	an	altitude	of	61	m,	which	precluded	use	
of	a	distance-	sampling	approach	to	estimate	detection	probabilities	
because	detection	does	not	decrease	substantially	across	the	width	
of	the	strip	transect	at	this	height	(Certain	&	Bretagnolle,	2008).	For	
our	analyses,	we	focus	on	aerial	waterbird	surveys	conducted	in	win-
ter	and	summer	2018,	winter	2019,	and	winter	2020.

To	 examine	 detection	 errors,	 data	 were	 collected	 with	 a	
double-	observer	 protocol	 where	 same-	side	 front-		 and	 rear-	seat	
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observers	 independently	 recorded	 count	 and	 species	 identifica-
tion	records	of	all	waterbirds	that	they	observed	in	the	observation	
strip	(flight	transect	out	to	200	m).	Two	experienced	observers,	a	
pilot-	biologist	and	a	crew	member,	were	always	 stationed	 in	 the	
front	seats	of	the	plane	and	counted	out	of	their	respective	win-
dows.	 A	 second	 experienced	 observer	 (another	 crew	 member)	
sat	 in	 a	 rear	 seat	 either	 behind	 the	 pilot-	biologist	 or	 behind	 the	
first	 crew	 member	 for	 the	 double-	observer	 protocol.	 The	 two	
crew	members	rotated	their	seat	positions	throughout	the	survey	
so	crew	member	detection	could	be	evaluated	 independently	of	
seat	 position.	 Observers	 (pilot-	biologist	 and	 crew	 members)	 re-
corded	 the	 species	 (or	 taxonomic	 family	 when	 species	 identifi-
cation	was	not	possible),	number	of	individuals	in	the	group	(one	
or	more),	and	the	GPS	location.	During	post	hoc	data	processing,	
we	 grouped	double-	observer	 records	 that	were	 recorded	within	
10	 s	of	each	other.	We	chose	 this	 temporal	 cutoff	 to	accommo-
date	differences	in	visibility	between	observers	and	potential	lags	
in	recording	time.	For	example,	front	observers	could	see	further	
ahead	of	the	aircraft	than	the	rear	observers,	and	this	visibility	dif-
ference	may	have	produced	recording	 lags	for	the	rear	observer.	
Thus,	the	10-	s	window	limited	double-	observer	records	to	those	

most	likely	to	contain	matching	records.	Grouped	double-	observer	
records	were	 then	classified	as:	Species	+	Count	Match	–		 count	
and	 species	 identification	 matched	 between	 observer	 records,	
Generic	+	 Count	Match	 –		 count	 and	 taxonomic	 family	matched	
between	observer	records,	Species	+	Bin	Match	–		log10	count	bin	
(i.e.,	0,	1–	10,	11–	100,	101–	1000,	and	1000+)	and	species	identifi-
cation	matched	 between	 observer	 records	 (after	 count	matches	
accounted	for),	Generic	+	Bin	Match	–		log10	count	bin	(i.e.,	0,	1–	
10,	11–	100,	101–	1000,	and	1000+)	and	taxonomic	family	matched	
between	 observer	 records	 (after	 count	 matches	 accounted	 for),	
Species	Only	Match—	species	 identification	matched	 but	 neither	
count	nor	count	bin	matched	between	observer	records,	Generic	
Only	Match—	species	taxonomic	family	matched	but	neither	count	
nor	 count	 bin	 matched	 between	 observer	 records,	 Mismatch—	
species	did	not	match	between	observer	records,	and	No	Match—	
there	was	no	observation	from	the	other	observer	recorded	within	
10	s.	We	note	that	 the	use	of	 the	term	“generic”	 is	meant	 in	 the	
generic	sense	to	be	interpreted	as	“general,”	not	in	the	taxonomic	
sense	to	be	interpreted	as	“genera.”	This	double-	observer	protocol	
and	data	processing	procedure	allowed	us	to	identify	potential	er-
rors,	including	nondetection,	counting	error,	and	misidentification.

F I G U R E  1 (a)	Gulf	of	Mexico	Marine	Assessment	Program	for	Protected	Species	survey	units	(n =	180)	for	summer	and	winter	2018–	
2020	surveys.	(b)	Schematic	diagram	depicting	the	design	of	a	single	survey	unit	(inset).	Three	transect	lines	(black	lines)	were	placed	inside	
the	survey	unit,	and	observers	counted	and	identified	all	waterbirds	within	400	m	of	the	transect	line	(200	m	on	each	side	of	the	transect;	
shown	in	gray)

 20457758, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.8733 by U

niversity O
f A

lberta, W
iley O

nline L
ibrary on [21/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 14DAVIS et Al.

2.3  |  Online quiz

We	conducted	an	online	survey	to	evaluate	observer	counting	errors	
with	known	group-	size	data.	We	designed	the	group	(flock)	count-
ing	 quiz	 using	Qualtrics	 survey	 software.	 The	 design	 and	 content	
of	 the	 quiz	were	 adapted	 from	 the	U.S.	 Fish	 and	Wildlife	 Service	
Aerial	Observer	Training	and	Testing	Resources	 (https://www.fws.
gov/water	fowls	urvey	s/).	We	distributed	the	quiz	via	email	to	~100 
trained	 aerial	 observers	 (including	 those	 from	 the	 GoMMAPPS	
project)	 and	 biologists	with	 no	 aerial	 survey	 observer	 experience.	
Seventy-	eight	individuals	completed	the	online	quiz.	The	quiz	con-
sisted	 of	 background	 questions	 regarding	 respondents’	 level	 of	
experience	 conducting	 aerial	 bird	 surveys	 (Expert,	 Intermediate,	
Novice,	No	Experience;	Appendix	S2,	Table	A1)	and	confidence	 in	
their	flock	counting	skills	 (High,	Medium,	Low;	Appendix	S2,	Table	
A2).	The	flock	counting	portion	of	the	quiz	consisted	of	two	practice	
images	and	22	timed	quiz	images	of	known-	size	flocks	(Appendix	S2,	
Table	A3	and	Figure	A1)	that	were	representative	of	flock	sizes	ob-
served	during	GoMMAPPS	surveys	(Appendix	S2,	Figure	A2).	Each	
image	was	displayed	for	10	s	before	it	disappeared,	and	the	quiz	au-
tomatically	advanced	to	a	question	asking	how	many	birds	were	in	
the	image.	See	Appendix	S2	for	additional	details.

3  |  RESULTS

3.1  |  Data summaries

3.1.1  |  Literature	review

Of	the	108	items	returned	by	the	Web	of	Science	search	and	the	250	
items	returned	by	the	Google	Scholar	search,	102	papers	that	were	
published	 from	1974	 to	2020	met	our	 inclusion	criteria	 (Appendix	

S1).	Although	the	number	of	peer-	reviewed	publications	using	aerial	
survey	methods	has	increased	over	time,	papers	focused	specifically	
on	methodology	of	aerial	surveys	have	not	exhibited	the	same	trend	
(Figure	2).	Most	of	 the	papers	 in	our	 collection	examined	a	 single	
species	(N =	49)	or	taxonomic	group	(N =	37),	but	six	papers	focused	
on	multiple	 taxa,	 three	were	 based	 on	 simulations,	 and	 seven	 did	
not	name	specific	species	of	interest.	The	taxonomic	groups	studied	
were	birds	(N =	26),	marine	mammals	(N =	11),	terrestrial	ungulates	
(N =	47),	and	macropods	(N =	8).	The	aerial	surveys	covered	a	wide	
range	 of	 environments	 including	 terrestrial	 (i.e.,	 savanna,	 forest,	
mountain;	N =	64)	and	aquatic/marine	(i.e.,	open-	ocean,	nearshore,	
wetlands; N =	31)	across	North	America	(N =	47),	Australia	(N =	23),	
Africa	(N =	16),	and	Europe	(N =	5).	Fixed-	wing	aircraft	were	used	
most	frequently	 (N =	43),	but	helicopters	were	also	employed	 in	a	
sizable	portion	of	projects	(N =	26).	Seven	papers	used	both	types	of	
aircrafts,	and	26	either	did	not	name	the	aircraft	type	or	it	was	not	
applicable	because	the	study	used	aerial	photos	or	simulated	data.	
Approximately	one-	third	(32.4%;	N =	33)	of	papers	discussed	survey	
design	variables	including	the	size,	shape,	and	configuration	of	sur-
vey	units,	delineation	of	survey	units	across	a	study	area,	and	the	
timing	and	cost	of	surveys.	The	most	common	aerial	survey	designs	
included	transect-	based	designs,	primarily	strip	transects	 (N =	61),	
quadrat	(N =	8)	or	complete	census	designs	(N =	6).

The	 three	primary	aerial	 survey	 issues	 (nondetection	 [N =	78],	
counting	error	[N =	27],	and	species	identification	[N =	10])	were	not	
unique	to	any	specific	taxa	or	environment	and	31	papers	addressed	
more	than	one	of	the	three	focal	 issues	of	nondetection,	counting	
error,	and	species	identification.	Issues	related	to	nondetection	were	
pervasive	throughout	the	entire	time	period	examined;	however,	the	
methods	used	to	handle	nondetection	changed	over	time.	Although	
counting	error	and	species	misidentification	were	presented	as	 is-
sues	in	early	papers,	approaches	to	rectify	these	issues	were	largely	
missing	from	the	literature	until	recently.

F I G U R E  2 Aerial	wildlife	survey	papers	
published	by	year	during	1970–	2020.	
The	methods	focused	papers	included	
in	our	review	are	shown	in	blue,	and	the	
general	aerial	survey	literature	are	shown	
in	orange.	Black	lines	show	regressions	
for	the	general	aerial	survey	literature	
and	aerial	survey	methods	literature,	
respectively.	The	general	aerial	survey	
literature	consists	of	the	first	500	results	
of	the	following	Google	Scholar	query:	
“aerial	survey*”	AND	helicopter	OR	fixed-	
wing	OR	aircraft	OR	plane	AND	count	OR	
abundance	AND	wildlife	OR	ecology	OR	
conservation
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3.1.2  |  Case	study

During	GoMMAPPS	surveys,	double	observers	collected	2056	total	
records	during	the	winter	2018	survey,	1620	in	summer	2018,	1706	
in	winter	2019,	and	2584	in	winter	2020.	We	were	unable	to	recon-
cile	double-	observer	records	for	winter	2020	data	due	to	technical	
difficulties	 with	 syncing	 in-	flight	 data	 computer	 clocks.	 Recorded	
flock	 sizes	 varied	 from	 one	 individual	 to	 thousands	 across	 survey	
events	(Maximum	counts—	winter	2018:	2000;	summer	2018:	800;	
winter	 2019:	 3200;	 winter	 2020:	 500).	 However,	 most	 observa-
tions	were	of	 single	 individuals	 (winter	2018:	 71%;	 summer	2018:	
66%;	winter	2019:	77%;	winter	2020:	74%).	The	median-	recorded	
flock	size	was	one	individual	across	all	survey	time	periods	while	the	
mean	recorded	flock	size	ranged	between	four	and	seven	individuals	
for	the	different	survey	events.	Observers	recorded	31–	49	unique	
waterbird	 species	 during	 survey	 events	 (winter	 2018:	 49	 species;	
summer	 2018:	 34	 species;	winter	 2019:	 31	 species;	winter	 2020:	
35	 species).	 During	winter	 seasons,	 the	most	 prevalent	waterbird	
species	 were	 northern	 gannets	 (Morus bassanus)	 followed	 by	 gull	
and	tern	(Laridae)	species,	and	during	the	summer	seasons,	the	most	
prevalent	waterbird	species	were	gulls	and	terns	followed	by	brown	
pelicans	(Pelecanus occidentalis).

The	issues	identified	in	the	literature	were	present	in	our	water-
bird	case	study,	highlighting	the	high	likelihood	that	these	issues	are	
prevalent	in	most	aerial	surveys	even	if	they	are	not	reported.	We	
report	 results	 from	both	 the	 literature	 review	 and	our	 case	 study	
on	each	of	the	 issues	of	nondetection,	counting	error,	and	species	
misidentification	in	the	following	sections.

3.2  |  Analyses of aerial survey challenges

3.2.1  |  Nondetection:	failure	to	record	individuals	
when they are present

A	majority	of	papers	 (76.5%,	N =	78)	 identified	nondetection	as	a	
problem	 that	 can	 lead	 to	 undercounting	 and	 biased	 estimates	 of	
abundance.	 Some	 of	 the	 earliest	 literature	 (i.e.,	 published	 before	
1985)	focused	on	describing	the	issue	of	nondetection	but	did	not	
offer	 any	 comparative	 analyses.	The	main	 source	of	 nondetection	
described	was	visibility	bias,	where	animals	were	not	visible	because	
they	 were	 concealed	 or	 obscured	 by	 vegetation	 or	 other	 habitat	
features.	Other	sources	of	nondetection	errors	that	were	described	
in	the	 literature	were	observer	fatigue,	sun	glare,	and	poor	survey	
design	(i.e.,	survey	units	did	not	cover	suitable	habitat	for	target	spe-
cies,	or	survey	 timing	did	not	coincide	with	 target	species	activity	
patterns).	Nearly	half	of	 the	nondetection	 literature	demonstrated	
the	magnitude	of	nondetection	errors	by	contrasting	different	sur-
vey	methods,	such	as	aerial	count	surveys	versus	known-	presence	
surveys,	 including	 telemetry	 or	 infrared	 camera	 surveys.	 The	 re-
maining	nondetection	literature	developed	and	introduced	methods	
for	estimating	and	correcting	nondetection	biases	(discussed	in	fur-
ther	detail	below).

In	the	GoMMAPPS	survey	data,	approximately	36%	of	observa-
tions	recorded	by	one	observer	were	missed	by	the	other	observer	
on	the	same	side	of	 the	aircraft	 (Table	1:	No	Match	across	all	sur-
veys).	Of	 these	missed	 observations,	most	were	 single	 individuals	
(77.7%,	N =	1503),	and	frequency	of	missed	observations	decreased	

TA B L E  1 Summary	of	data	matches	between	two	observers	recording	data	on	the	same	side	of	an	aerial	survey	for	each	season	of	the	
Gulf	of	Mexico	Marine	Assessment	Program	for	Protected	Species	(GoMMAPPS)	surveys.	We	grouped	double-	observer	records	that	were	
recorded	within	10	s	of	each	other	and	classified	these	records	into	categories	based	on	the	following	criteria:	Species	+	Count	Match	
–		count	and	species	identification	matched	between	observer	records,	Generic	+	Count	Match	–		count	and	taxonomic	family	matched	
between	observer	records,	Species	+	Bin	Match	–		log10	count	bin	(i.e.,	0,	1–	10,	11–	100,	101–	1000,	and	1000+)	and	species	identification	
matched	between	observer	records	(after	count	matches	accounted	for),	Generic	+	Bin	Match	–		log10	count	bin	(i.e.,	0,	1–	10,	11–	100,	101–	
1000,	and	1000+)	and	taxonomic	family	matched	between	observer	records	(after	count	matches	accounted	for),	Species	Only	Match—	
species	identification	matched	but	neither	count	nor	count	bin	matched	between	observer	records,	Generic	Only	Match—	species	taxonomic	
family	matched	but	neither	count	nor	count	bin	matched	between	observer	records,	Mismatch—	species	did	not	match	between	observer	
records,	and	No	Match—	there	was	no	observation	from	the	other	observer	recorded	within	10	s.	For	the	purposes	of	this	study,	the	
identifications	of	“gull”	and	“tern”	were	included	in	the	species-	level	identifications	described	above,	and	these	identifications	were	pooled	
under	the	family	Laridae	for	higher-	level	generic	identifications

Winter 2018 Summer 2018 Winter 2019 Totala

Species	+	Count	Match 645 458 651 1754	(32.5%)

Generic	+	Count	Match 86 71 85 242	(4.5%)

Species	+	Bin	Match 144 150 111 405	(7.5%)

Generic	+	Bin	Match 84 88 54 226	(4.2%)

Species	Only	Match 25 17 20 62	(1.2%)

Generic	Only	Match 11 3 3 17	(0.3%)

Mismatch 339 219 184 742	(13.8%)

No	Match 722 614 598 1934	(36.0%)

Totalb 2056 1620 1706 5382	(100%)

aRow	totals	are	the	total	of	all	records	in	each	category	across	all	survey	and	observers.
bColumn	totals	are	the	total	records	for	each	season	across	all	observers.
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    |  7 of 14DAVIS et Al.

with	 increasing	 group	 size.	 Of	 the	 36%	 missed	 observations,	 8%	
were	the	result	of	one	observer	recording	more	species	present	than	
the	other	observer	(N =	158).	We	note	that	our	“No	Match”	results	
include	 instances	where	a	bird	record	was	available	to	be	counted	
for	one	observer	and	not	the	other.	In	certain	instances,	the	move-
ment	of	the	plane	resulted	in	birds	flushing	from	the	flight	transect,	
which	could	have	resulted	in	them	having	been	recorded	by	one	ob-
server	(likely	front	observer)	but	missed	by	the	other	(likely	rear	ob-
server).	Thus,	we	recognize	that	our	results	represent	a	“worst-	case	
scenario”	for	missed	observations.

We	 also	 compared	 naïve	 detection	 probabilities	 across	 crew	
members	 for	 each	 survey	 event,	 where	 we	 calculated	 the	 pro-
portion	 of	 records	 that	 were	 matched	 between	 pairs	 of	 double	
observers	 (all	 but	 No	 Match	 category).	 Naïve	 detection	 prob-
abilities	 of	 groups	 of	waterbirds	were	 highly	 variable	 among	 in-
dividual	 observers	 and	 across	 survey	 events	 (Table	 2).	 Although	
pilot-	biologists	 were	 responsible	 for	 flying	 aircrafts	 and	 collect-
ing	survey	data	simultaneously,	their	naïve	detection	probabilities	
were	comparable	to	those	of	nonpilot	observers	(Table	2).	Average	
nondetection	errors	also	differed	between	the	eastern	and	west-
ern	halves	of	our	study	area	with	20%	of	records	classified	as	No	
Match	for	the	western	half	of	the	study	area	across	winter	2018,	
summer	2018,	and	winter	2019	surveys	and	58%	of	records	clas-
sified	as	No	Match	for	the	eastern	half.	These	results	suggest	that	
detection	may	vary	by	individual	observer,	survey	event,	and	spa-
tial	 location,	 whether	 or	 not	 that	 information	 is	 included	 in	 the	
analysis	of	the	data.

Methodological	and	statistical	developments	for	handling	non-
detection	errors	have	been	a	major	focus	of	ecological	research	for	
decades,	 and	 aerial	 survey	 research	 is	 no	 exception.	 Prior	 to	 the	
1990s,	 much	 of	 the	 aerial	 survey	 literature	 focused	 on	 calculat-
ing	“correction	factors”	 from	“sightability	models”	 (Caughley	et	al.,	
1976).	These	sightability	models	considered	survey	variables,	such	
as	flight	height,	flight	speed,	and	observation	strip	width	to	calculate	
a	correction	factor	that	was	then	applied	to	the	aerial	count	data	to	
correct	for	visibility	biases.	Although	this	method	is	less	common	in	
more	recent	 literature	(2000–	present),	correction	factors	continue	
to	be	used.	The	primary	 reason	 that	 the	use	of	 correction	 factors	
has	declined	is	because	such	models	are	cumbersome	to	implement	
over	 varying	 conditions,	 heterogeneous	 landscapes,	 and	 across	
multiple	 species	as	a	different	model/correction	 factor	 is	 required	
for	each	scenario	(Steinhorst	&	Samuel,	1989).	For	example,	based	
on	the	nondetection	errors	we	uncovered	in	the	GoMMAPPS	data,	
we	would	need	 to	model	 a	 correction	 factor	 for	 each	 region,	 sur-
vey	event,	 and	observer,	 and	we	would	 likely	need	 to	account	 for	
different	 visibility	 conditions,	 as	 well.	 Thus,	 the	 correction	 factor	
approach	can	become	untenable	when	many	factors	contribute	to	
nondetection errors.

In	the	1990s,	other	statistical	techniques	were	introduced	to	for-
mally	address	issues	of	nondetection	in	aerial	count	data	(Quang	&	
Becker,	1997),	 including	distance	 sampling	and	 reconciled	double-	
observer	 methods.	 In	 distance	 sampling	 (sometimes	 referred	 to	
as	 “line	 transect	 sampling”	 in	 the	 aerial	 survey	 literature	 [Quang	
&	Becker,	1997]),	observers	move	along	a	transect	 line	and	record	
the	distance	to	detected	animals.	The	recorded	distances	are	used	
to	 fit	 a	 detection	 function	 that	 describes	 the	 change	 in	 detection	
probability	 as	 a	 function	of	 distance	 from	 transect	 and	 is	 used	 to	
estimate	 the	 proportion	 of	 animals	 not	 detected	 (Buckland	 et	 al.,	
2001).	Reconciled	double-	observer	methods	exploit	mark-	recapture	
methods	 (often	called	 the	 “double-	count	 technique”	 in	early	aerial	
survey	 literature	 (Graham	&	 Bell,	 1989),	 where	 two	 observers	 in-
dependently	 record	the	number	of	detected	animals	and	agree	on	
which	animals	were	detected	by	both	observers.	The	first	observer	
“marks”	 and	 “releases”	 certain	 animals	while	 the	 second	 observer	
“recaptures”	 the	animals.	This	creates	a	 two-	occasion	capture	his-
tory	 that	 can	 be	 used	 to	 estimate	 the	 number	 of	 missed	 animals	
(Graham	&	Bell,	1989).	These	methods	are	an	improvement	over	use	
of	correction	factors	because	they	allow	researchers	to	model	de-
tection	as	a	dynamic	variable	across	heterogeneous	environments	
and	visibility	conditions,	as	well	as	estimate	uncertainty	around	de-
tection	probability	(Walter	&	Hone,	2003).

In	the	last	decade,	researchers	have	combined	methods	for	es-
timating	 detection	 from	 double-	observer	mark-	recapture	 and	 dis-
tance	sampling	into	a	single	model	(Burt	et	al.,	2014).	This	approach	
uses	 the	 strengths	 of	 both	 distance	 sampling	 and	mark-	recapture	
sampling	to	fit	a	detection	function	where	the	shape	of	the	function	
is	 estimated	with	distance	 sampling	methods	 and	 the	 intercept	of	
the	function	is	estimated	using	the	mark-	recapture	data	(Laake	et	al.,	
2008).	Mark-	recapture	distance	sampling	thus	relaxes	the	assump-
tion	of	distance	sampling	that	all	individuals	on	the	transect	line	are	

TA B L E  2 Naïve	detection	probabilities	for	each	of	the	
nine	observers	that	participated	in	the	Gulf	of	Mexico	Marine	
Assessment	Program	for	Protected	Species	(GoMMAPPS)	data	
collection,	calculated	as	the	proportion	of	records	that	matched	
between	double-	observer	pairs	excluding	the	No	Match	category.	
Detection	probabilities	were	highly	variable	across	observers	and	
survey	events

Observer
Winter 
2018

Summer 
2018

Winter 
2019

Standard 
Deviation

Observer	1 —	 0.83 —	

Observer	2a 0.74 0.83 0.90 0.08

Observer	3 —	 0.80 —	

Observer	4 0.82 0.61 0.80 0.12

Observer	5 —	 0.49 —	

Observer	6a 0.71 0.61 0.70 0.06

Observer	7 0.82 —	 0.81 0.01

Observer	8 0.68 —	 0.73 0.04

Observer	9 0.65 —	 0.67 0.01

Standard	
Deviation

0.07 0.14 0.08

Note: Only	six	observers	were	used	in	each	survey	event.	A	dash	“—	”	
symbol	in	the	survey	season	columns	indicates	that	the	observer	did	
not	participate	in	that	survey.
aPilot	biologists.
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detected,	which	is	often	violated	in	aerial	surveys.	A	double-	observer	
protocol,	 as	 required	 for	mark-	recapture	 sampling,	 can	be	prohib-
itively	expensive	because	two	observers	are	needed	to	record	the	
same	data.	Thus,	these	approaches	to	correct	for	nondetection	may	
not	be	feasible	under	all	survey	scenarios.	In	such	cases,	researchers	
should	consider	whether	estimates	of	detection	probability	are	fea-
sible	given	the	sampling	conditions	and	operational	budget.

Distance	sampling	was	not	feasible	in	the	GoMMAPPS	surveys	
because	there	was	limited	time	available	to	record	all	the	necessary	
data	 from	 mixed-	species	 flocks,	 which	 is	 frequently	 the	 case	 for	
highly	mobile	species.	 In	addition,	when	groups	are	 loosely	aggre-
gated,	crossing	over	multiple	distance	bands	or	expanding	outside	
the	 sampling	area,	 as	was	often	 the	 case	on	our	 surveys,	 it	 is	 un-
clear	 from	where	 the	distance	measurement	should	be	 taken,	and	
this	becomes	especially	burdensome	when	groups	contain	multiple	
species.	 Double-	observer	 mark-	recapture	 sampling	 was	 also	 im-
practical	with	the	GoMMAPPS	surveys	again	because	of	the	limited	
time	available	to	reconcile	which	individuals	were	seen	(or	missed)	
by	both	observers	due	to	the	speed	of	the	planes	and	fast	mobility	
of	waterbirds.	Thus,	 the	GoMMAPPS	project	 reveals	 that	many	of	
the	analytical	approaches	designed	to	account	for	nondetection	may	
be	 impossible	 to	 implement	broadly.	However,	post	hoc	data	pro-
cessing	allowed	us	 to	 reconcile	double-	observer	 counts	 that	were	
recorded	within	10	s	of	each	other.	The	reconciled	data	could	then	
potentially	be	used	to	fit	mark-	recapture	models	to	estimate	detec-
tion	probability,	if	the	assumptions	made	to	simplify	data	collection	
(e.g.,	a	temporal	cutoff	for	matching	records)	are	tenable.	Using	the	
reconciled	double-	observer	data,	we	found	differences	in	detection	
between	 survey	 regions.	 Thus,	 a	 covariate	 to	 capture	 this	 spatial	
heterogeneity	would	be	useful	to	estimate	indices	of	abundance	in	
our	 case,	particularly	 in	 a	 region	 like	 the	northern	Gulf	of	Mexico	
where	levels	of	anthropogenic	activity	vary	from	west	to	east.	When	
sampling	methods	that	allow	for	estimating	detection	probability	are	
infeasible,	researchers	should	carefully	consider	observational	vari-
ables	 that	may	affect	detection	and	 include	 those	 in	 their	models	
when	estimating	indices	of	abundance	(Johnson,	2008).	However,	in	
doing	so,	researchers	should	recognize	a	potential	loss	in	clarity	of	
inference	when	variables	 that	affect	abundance	and	detection	are	
both	present	 in	a	single	model	 (i.e.,	not	separated	 in	a	hierarchical	
framework).

3.2.2  |  Counting	Error:	failure	to	correctly	
enumerate	group	size

Most	 aerial	 survey	 research	 treats	 issues	 of	 counting	 error	 as	 a	
nondetection	problem.	However,	about	one	quarter	of	 the	papers	
(N =	 27)	 addressed	 counting	 error	 distinctly	 from	 nondetection.	
When	 possible	 to	 assess,	 researchers	 have	 found	 that	 observers	
undercount	 group	 size	 on	 average,	 leading	 to	 underestimates	 of	
abundance	 (Frederick	 et	 al.,	 2003;	Gerrodette	 et	 al.,	 2019).	Many	
aerial	 survey	 efforts	 focus	 on	 species	 that	 often	 occur	 in	 groups,	
including	 wintering	 waterfowl,	 seabirds,	 wading	 birds,	 ungulates,	

and	 cetaceans	 among	 others.	 Aerial	 counts	 of	 animals	 are	 usually	
obtained	by	trained	in-	flight	observers	or	by	collection	and	analysis	
of	aerial	photos	and	videos	captured	by	on-	board	cameras	(Chabot	
&	Francis,	2016;	Žydelis	et	al.,	2019).	Although	widely	used,	in-	flight	
observer	counts	are	often	biased	(Caughley,	1977;	Jolly,	1969),	with	
variability	among	observers	and	a	tendency	to	underestimate	group	
size	(Chabot	&	Francis,	2016),	particularly	for	large	groups	(Buckland	
et	al.,	2012;	Frederick	et	al.,	2003).

In	 the	 GoMMAPPS	 survey	 data,	 flock	 counts	 varied	 between	
same-	side	 observers,	 with	 the	magnitude	 of	 differences	 between	
front-		and	rear-	observer	counts	increasing	with	flock	size	(Figure	3a).	

F I G U R E  3 (a)	Counts	of	waterbirds	from	front	and	rear	
same-	side	observers,	shown	for	the	winter	2018	Gulf	of	Mexico	
Marine	Assessment	Program	for	Protected	Species	(GoMMAPPS)	
survey.	The	inset	figure	shows	the	log10	of	flock	counts	<100	of	
waterbirds	from	front	and	rear	same-	side	observers.	Blue	lines	
show	1:1	lines.	(b)	Absolute	value	of	the	percent	difference	in	
respondents’	counts	and	the	true	flock	size	for	each	of	the	22	quiz	
images.	Points	plotted	are	the	mean	absolute	value	of	the	percent	
difference	in	respondent	counts	and	true	flock	sizes.	Error	bars	are	
95%	confidence	intervals.	The	inset	figure	shows	quiz	responses	
(black	points)	from	78	online	counting	quiz	respondents	for	each	
of	the	22	quiz	images.	Orange	points	show	the	median	response	
value	for	each	of	the	22	quiz	images.	The	blue	line	is	a	1:1	line;	
observer	responses	plotted	above	this	line	are	overcounts	of	the	
true	flock	size,	and	observer	responses	plotted	below	this	line	are	
undercounts
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Double-	observer	records	indicated	that	roughly	33%	of	observers’	
counts	 (across	 all	 species)	 matched	 across	 records	 from	 all	 sur-
veys	(N =	1996;	~85%	of	which	consisted	of	single-	individual	count	
matches).	 Thirty-	five	 percent	 of	 double-	observer	 counts	 matched	
for	 flocks	with	 five	 individuals	or	 fewer	across	all	possible	species	
in	 a	 flock	 (N =	 4946),	 and	 approximately	 10%	of	 double-	observer	
log10	 count	 bins	matched	when	 exact	 counts	 did	 not	match.	 For	
flock	sizes	between	six	and	30	individuals	(N =	319),	approximately	
7.5%	of	double-	observer	counts	matched,	and	approximately	33%	of	
double-	observer	 log10	count	bins	matched	when	exact	counts	did	
not	match.	Approximately	8.5%	of	double-	observer	 count	 records	
matched	 for	 flock	sizes	greater	 than	30	 individuals	 (N =	117),	 and	
approximately	 32%	of	 double-	observer	 log10	 count	 bins	matched	
when	exact	counts	did	not	match.	Counts	>30	individuals	may	have	
had	slightly	more	agreement	between	double	observers	than	smaller	
group	 sizes	due	 to	 similar	 rounding	 tendencies	when	 large	groups	
were	encountered.	Binning	counts	into	a	log10	categorical	scheme	
resulted	in	substantially	more	agreement	between	double-	observer	
records	 than	 comparing	 exact	 counts	 alone	 (49%	 agreement	 ver-
sus	 37%	 agreement,	 respectively),	 particularly	 for	 flock	 sizes	 >5 
individuals.

Our	online	quiz	revealed	that	even	trained	observers	have	diffi-
culty	correctly	enumerating	flock	size	from	images	taken	during	ae-
rial	surveys	of	waterbirds	(Figure	3b,	Appendix	S2,	Figures	A3–	A5).	
At	large	flock	sizes	(200–	1000),	observer	counts	ranged	from	40%	to	
150%	of	the	true	flock	size,	which	is	consistent	with	previous	studies	
(Frederick	et	al.,	2003).	On	average	for	the	large	flocks	(>100),	ob-
server	counts	were	35–	48%	of	the	true	flock	size.	However,	even	at	
small	flock	sizes	(<100),	mean	observer	errors	were	as	high	as	30%.	
Observers	most	 frequently	 under-	counted	 flock	 sizes,	 a	 tendency	
that	increased	with	flock	size	with	50–	70%	of	all	observers	underes-
timating	flock	size	some	or	all	the	time	when	the	true	size	was	above	
30	 individuals.	 Observer	 experience	 and	 confidence	 in	 counting	
skills	had	no	effect	on	observer	ability	to	correctly	enumerate	flock	
size	in	the	online	quiz	(Appendix	S2,	Figures	A6–	A7).

As	most	aerial	 survey	 research	 treats	counting	error	as	a	non-
detection	 issue,	 the	solutions	 for	handing	nondetection	errors	are	
generally	applicable	 to	counting	errors.	However,	 recent	advances	
in	hierarchical	modeling	have	made	 it	possible	 to	partition	nonde-
tection	errors	from	counting	errors.	Clement	et	al.	(2017)	combined	
a	mark-	recapture	distance	sampling	model	with	an	N-	mixture	model	
(Royle,	2004)	to	separately	account	for	nondetection	and	counting	
errors.	 Under	 this	 approach,	 observers	 independently	 recorded	
counts	of	observed	groups	in	addition	to	the	detection	history	and	
distance	 data	 collected	 for	 a	 mark-	recapture	 distance	 sampling	
model.	 Combining	 the	 three	 sampling	methods	 into	 a	 single	 hier-
archical	model	allows	for	unbiased	abundance	estimates	when	ob-
servers	 imperfectly	detect	 individuals	due	 to	nondetection	errors,	
as	well	as	counting	error	(Clement	et	al.,	2017).	A	limitation	to	this	
model	is	that	it	requires	a	double-	observer	protocol,	which	may	be	
costly	 or	 impractical	 for	 some	 survey	 efforts,	 and	 it	 also	 requires	
distance	sampling,	which	is	not	feasible	in	all	survey	situations	(such	
as	the	GoMMAPPS	surveys).

Another	potential	solution	for	handling	counting	errors	is	to	use	
ordinal	modeling	 (Guisan	&	Harrell,	2000).	 In	 this	approach,	count	
data	are	binned	into	categories	(e.g.,	0,	1–	10	individuals,	11–	50	indi-
viduals),	and	the	probability	of	obtaining	a	certain	category	is	then	
modeled	instead	of	the	counts	directly	(Guisan	&	Harrell,	2000).	The	
appropriate	bin	breaks	may	be	based	on	a	log	scale	or	another	scale	
based	on	magnitude	of	observer	error	 (Figure	3)	or	where	natural	
breaks	occur	in	the	data	(Valle	et	al.,	2019).	Modeling-	binned	count	
data	rather	than	the	counts	themselves	may	alleviate	potential	con-
cerns	 regarding	 inferences	based	on	 counts	with	errors	 and	allow	
for	the	estimation	of	uncertainty	around	the	probability	of	ordinal	
classifications	(Fitzgerald	et	al.,	2021).	Additionally,	 if	ordinal	mod-
eling	approaches	are	comparable	 to	or	better	 than	 the	 typical	ap-
proach	of	using	a	count	distribution	(such	as	the	negative	binomial)	
to	model	abundance	(Zipkin	et	al.,	2014),	collecting	count	data	on	a	
categorical	scale	may	limit	the	training	and	time	needed	to	for	data	
collection.	Count	data	may	also	be	binned	after	field	data	collection	
if	concerns	arise	regarding	accuracy	of	recorded	counts.

3.2.3  | Misidentification:	failure	to	correctly	identify	
individuals

Wildlife	 survey	 data	 are	 often	 analyzed	 without	 consideration	 of	
species	 identification	 errors,	 despite	 evidence	 that	 identification	
errors	 occur	 regularly	 (Conn	 et	 al.,	 2013).	 Indeed,	 only	 10	 out	 of	
the	102	(~10%)	papers	directly	dealt	with	species	misidentification.	
Papers	 that	 reported	 issues	 associated	with	 species	misidentifica-
tion	tended	to	 focus	on	small-		or	medium-	bodied	animals	 that	are	
difficult	to	clearly	identify	or	even	detect	from	the	air	(Greene	et	al.,	
2017;	Lamprey	et	al.,	2020).	One	paper	addressed	difficulties	with	
age	and	sex	classification	in	elk	(Cervus canadensis);	like	species	iden-
tification,	age,	and	sex	classification	also	requires	observers	to	dis-
cern	small	details	from	the	survey	aircraft	(Bender	et	al.,	2003).

Although	 the	 GoMMAPPS	 survey	 observers	 were	 trained	 in	
waterbird	species	identification,	our	double-	observer	data	indicated	
that only ~41%	 of	 the	 observations	 recorded	 by	 both	 observers	
contained	matching	species	identifications	(Table	1:	species	+	count	
match,	species	+	bin	match,	and	species	only	match	categories).	 In	
addition,	 GoMMAPPS	 observers	 had	 difficulty	 discerning	 individ-
ual	gull	and	tern	species	due	to	their	small	body	sizes,	speed	of	the	
planes,	and	often	indiscernible	features	(e.g.,	similar	plumage	char-
acteristics,	body-	size,	or	bill	shape);	thus,	higher-	level	gull	and	tern	
identifications	(e.g.,	gull,	tern,	or	larid	spp.)	were	used	when	defini-
tive	species	identifications	could	not	be	made	(~85%	of	all	gull	and	
tern	records	across	survey	events).	Generic	identifications,	including	
individuals	identified	by	double	observers	as	different	species	within	
the	same	taxonomic	family	(e.g.,	white-	winged	scoter	[Melanitta de-
glandi]	versus	black	scoter	[Melanitta americana])	or	individuals	that	
were	not	identified	to	species-	level	(except	for	gulls	and	terns),	com-
prised ~9%	of	the	total	records	(Table	1:	generic	+	count	match,	ge-
neric +	bin	match,	and	generic	only	match	categories).	Mismatched	
records,	 including	 individuals	 identified	as	different	species	by	the	
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10 of 14  |     DAVIS et Al.

two	observers	(where	taxonomic	family	also	did	not	match	between	
double-	observer	 records),	 comprised	 ~13%	 of	 the	 total	 records	
(Table	1).	 It	 is	possible	 that	 some	of	 these	 records	are	 likely	 to	be	
detection	errors	rather	than	misidentification	errors,	as	we	could	not	
separate	these	issues.	Nevertheless,	given	the	findings	of	our	study,	
it	appears	that	species	identification	errors	are	likely	to	be	present	
and	possibly	pervasive	in	multispecies	aerial	survey	datasets,	espe-
cially	when	 similar	 species	 (e.g.,	 similar	 in	 body	 size	 and/or	 color-
ation)	co-	occur	as	they	often	do	in	waterbirds.

Auxiliary	 data	 that	 contain	 species-	level	 (or	 sex/age	 class)	 re-
cords	 are	 generally	 needed	 to	 correct	 identification	 errors.	 For	
most	studies	in	our	literature	review,	researchers	were	only	able	to	
report	 that	 identification	 errors	 existed	 because	 they	 had	 access	
to	other,	 independent	 survey	data	 in	 addition	 to	 the	aerial	 survey	
data	 (e.g.,	ground-	based	[Laursen	et	al.,	2008,	Greene	et	al.,	2017,	
Lamprey	et	al.,	2020]	and	vessel-	based	[Johnston	et	al.,	2015]	sur-
veys).	However,	auxiliary	data	are	rarely	available	because	it	is	costly	
and	time	consuming	to	obtain	as	it	requires	a	second,	simultaneous	
surveying	effort.	Furthermore,	secondary	surveys	may	suffer	from	
the	same	errors	present	in	aerial	survey	data.	Because	of	misidenti-
fication	errors,	it	may	be	inappropriate	to	model	individual	species,	
sex,	 or	 age	 class	 counts	when	 identifying	 features	 are	 difficult	 to	
distinguish	and	secondary	sources	of	data	are	unavailable.

No	 secondary	 sources	 of	 data	 were	 available	 to	 complement	
the	GoMMAPPS	aerial	survey	data	that	could	be	used	to	correct	for	
potential	 misidentification	 errors.	 However,	 when	 we	 aggregated	
species	records	by	higher-	order	taxonomic	classifications	(i.e.,	fam-
ily),	we	found	that	the	records	complementarily	 identified	by	both	
observers	(front	and	rear)	increased	by	approximately	10%	(Table	1:	
generic +	count	match,	generic	+	bin	match,	and	generic	only	match	
categories).	This	 suggests	 that	 analyzing	data	 at	higher	 taxonomic	
levels,	rather	than	species,	may	be	a	reasonable	approach	to	over-
come	identification	issues	when	similar	species	co-	occur	if	species-	
level	identification	is	not	a	primary	goal.

4  |  SYNTHESIZING SOLUTIONS: A PATH 
FORWARD

Our	literature	review	and	empirical	case	study	reveal	that	issues	of	
nondetection,	counting	error,	and	species	misidentification	are	prev-
alent	in	aerial	survey	count	data.	The	extent	to	which	each	of	these	
issues	may	bias	inferences	depends	on	the	unique	circumstances	of	
individual	survey	efforts,	including	the	frequency	and	severity	of	the	
errors	as	well	as	the	goals	of	the	survey	and	the	subsequent	analyses	
of	the	data.	The	ideal	approach	for	mitigating	potential	biases	from	
aerial	 survey	data	will	 vary	based	on	 the	 specific	questions	 asked	
and	which	issue(s)	are	likely	to	occur	with	the	particular	survey	con-
ditions.	A	good	first	step	when	designing	an	aerial	count	survey	is	to	
determine	which	issues	are	probable	under	given	survey	conditions.	
For	 example,	 if	 the	 aerial	 survey	 targets	 a	 single,	 solitary	 species,	
counting	and	species	misidentification	errors	are	unlikely	to	present	
serious	issues	for	inference,	leaving	nondetection	as	the	only	major	

source	 of	 bias.	 However,	 when	 multiple,	 similar-	looking	 species	
that	aggregate	are	targeted,	such	as	in	our	GoMMAPPS	case	study,	
all	 three	 detection	 errors	 should	 be	 carefully	 considered.	 Prior	 to	
data	 collection,	 a	 simulation	 study	 can	 help	 determine	 the	 extent	
to	which	nondetection,	counting,	and	misidentification	errors	may	
bias	estimates	under	various	survey	conditions,	revealing	where	and	
when	survey	effort	would	be	best	utilized	(e.g.,	focusing	on	improv-
ing	 species	 identification	 versus	 nondetection	 errors)	 to	minimize	
effects	on	abundance	and	covariate	inferences.	In	any	case,	the	like-
lihood	of	encountering	 these	 issues	 should	be	considered	prior	 to	
designing	an	aerial	sampling	scheme	to	minimize	potential	errors	or	
at	least	understand	when	and	where	they	might	occur.

Sampling	 errors	 can	 be	 partially	mitigated	 during	 survey	 plan-
ning,	 data	 collection	 procedures,	 and/or	 data	 analysis	 stages	 of	 a	
project.	 The	 appropriate	methods	 for	 handling	 various	 sources	 of	
bias	will	depend	on	the	stage	at	which	these	issues	are	considered.	
If	 the	 potential	 for	 nondetection,	 counting,	 and	 misidentification	
errors	is	considered	during	study	development,	steps	can	be	taken	
to	design	a	survey	that	can	both	identify	and	measure	these	errors	
while	taking	logistical	considerations	into	account.	Recognizing	con-
ditions	 that	 are	 likely	 to	 present	 data	 issues	 can	 help	 researchers	
identify	where	and	when	resources	may	best	be	used	to	maximize	
count	data	quality	and	when	auxiliary	sources	of	data	may	be	neces-
sary	to	address	research	goals.	Considering	the	many	methods	pre-
sented	in	the	literature	and	our	own	experience	with	waterbird	aerial	
surveys,	we	 consolidate	 the	methods	 presented	 above	 into	 a	 few	
recommended	approaches	for	handling	nondetection,	counting,	and	
identification	errors.	Our	recommendations	are	organized	across	the	
different	stages	of	survey	implementation	including	survey	planning,	
sampling	 methodology,	 and	 modeling	 approach.	 We	 also	 suggest	
potentially	 exciting	 future	directions	 in	 aerial	 survey	 research	and	
methods.

4.1  |  Survey planning

Selecting	 an	 appropriate	 sampling	 framework	 for	 particular	 re-
search	 question(s)	 or	 management	 objective(s)	 is	 paramount	 for	
choosing	an	effective	study	design	that	will	result	 in	reliable	 infer-
ences.	However,	aerial	surveys	must	balance	a	number	of	logistical	
and	practical	considerations	with	the	scientific	goal(s)	of	the	study.	
Logistical	considerations,	such	as	defining	the	spatial	extent	of	sam-
pling	and	determining	the	appropriate	configuration	of	aerial	sam-
pling	 units	 influence	 survey	 cost	 and	 efficiency	 and	 contribute	 to	
what	 sampling	methodologies	 are	 feasible	 (Caughley,	 1977;	Gibbs	
et	 al.,	 1998).	 Standardizing	 sampling	methodologies	 across	 survey	
events,	including	the	survey	design	as	well	as	data	collection	proto-
cols,	is	important	to	ensure	that	indices	of	abundance	or	distribution	
of	species	are	comparable	across	years/seasons.

These	design	considerations	also	influence	the	types	of	research	
questions	that	are	possible	to	address.	Understanding	the	effects	of	
environmental	variables	on	species	abundance	requires	a	great	deal	
of	survey	data,	and	 if	this	 is	the	goal,	researchers	should	prioritize	
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    |  11 of 14DAVIS et Al.

sampling	 a	 range	 of	 environmental	 conditions	many	 times	 (Zipkin	
et	al.,	2015).	However,	if	the	goal	of	the	survey	is	to	estimate	abun-
dance	of	a	species	(or	a	group	of	species),	researchers	may	consider	
using	probabilistic	sampling	strategies	 rather	 than	stratifying	sam-
pling	 units	 across	 the	 full	 range	 of	 environmental	 variables	 of	 in-
terest.	In	many	cases,	aerial	surveys	are	used	to	estimate	indices	of	
abundance	or	distribution	that	are	used	to	track	changes	over	time,	
and	if	this	is	the	goal	of	the	survey,	researcher	efforts	should	focus	
on	maintaining	consistency	in	design,	personnel,	and	protocols	over	
time	to	minimize	observer	errors	related	to	changes	 in	the	survey.	
When	 designing	 an	 aerial	 survey,	 researchers	 are	 encouraged	 to	
carefully	consider	their	research	goals	and	the	extent	to	which	sur-
vey	design	can	be	used	to	either	mitigate	or	elucidate	nondetection,	
counting,	and	misidentification	errors.

4.2  |  Sampling methodology

Our	 literature	 review	 revealed	 that	 distance	 sampling	 is	 the	most	
popular	 framework	 for	 collecting	 aerial	 count	 data	 and	 modeling	
abundance	with	a	detection	probability.	However,	we	suggest	 this	
approach	only	be	used	when	observers	have	adequate	time	to	re-
cord	 distances	 (or	 distance	 bands)	 and	when	 the	 survey	 targets	 a	
small	number	of	species.	One	solution	could	be	using	high	resolution	
photography	or	video	 in	addition	 to	or	 instead	of	 in-	flight	observ-
ers	which	would	allow	for	a	number	of	different	analytical	methods	
for	estimating	abundance	and	detection	probability.	However,	in	the	
presence	of	other	errors	(e.g.,	counting	and	species	identification	er-
rors),	estimating	absolute	abundance	may	be	misguided	as	relative	
abundance	indices	may	be	the	only	obtainable	parameter.

The	double-	observer	method	can	be	used	to	reconcile	disparate	
observer	data	during	data	collection	if	observers	work	together	to	
agree	on	what	was	observed	(Quang	&	Becker,	1997).	However,	in	the	
GoMMAPPS	case	study,	the	speed	of	the	aircraft	and	frequency	of	
observations	presented	logistical	limitations	for	reconciling	in-	flight	
double-	observer	 data.	 Additionally,	 employing	 a	 second	 observer	
to	 record	 duplicate	 data	may	 be	 prohibitively	 expensive	 for	 some	
survey	efforts.	Thus,	we	emphasize	the	importance	of	standardizing	
survey	design	and	sampling	protocols	across	survey	efforts	to	min-
imize	 potential	 biases	 related	 to	 differences	 in	 procedures	 among	
surveys.	However,	use	of	a	second	observer	(even	on	a	limited	basis),	
to	estimate	detection	factors	and	counting	errors	and/or	assist	with	
species	identification	can	be	very	beneficial	to	determining	the	rate	
and	nature	of	errors.	When	estimating	detection	errors	explicitly	is	
intractable,	researchers	may	opt	to	instead	estimate	relative	abun-
dance	using	 generalized	 linear	models	 by	 incorporating	 covariates	
that	affect	detection	into	models	of	abundance.

4.3  |  Modeling

Despite	survey	training,	numerous	studies,	including	our	own	water-
bird	 work,	 have	 shown	 that	 in-	flight	 observers	 often	 undercount	

group	size,	especially	for	large,	aggregated	groups,	and	misidentify	
species	when	multiple	species	are	present.	Without	auxiliary	data,	
such	as	a	simultaneous	survey	effort	(e.g.,	ground-	based	or	vessel-	
based	 sampling)	 or	 a	 double-	observer	 protocol,	 it	 is	 impossible	 to	
identify	 that	 these	errors	 are	present.	When	group	 sizes	 are	 very	
small	(<10	individuals)	and	only	a	single	species	or	obviously	dissimi-
lar	species	are	 targeted	 (e.g.,	African	elephant	 [Loxodonta africana] 
versus	African	buffalo	[Syncerus caffer]	[Greene	et	al.,	2017]),	these	
errors	may	be	limited;	however,	outside	of	these	circumstances,	it	is	
likely	that	counting	and	misidentification	errors	are	not	only	present	
but	also	prevalent.	Nevertheless,	despite	these	issues,	aerial	surveys	
have	often	been	used	to	 identify	significant	changes	 in	population	
sizes	through	time	as	well	as	to	elucidate	important	environmental	
relationships.	 In	 these	cases,	 it	 is	 assumed	 that	 the	effect	 sizes	of	
covariate	relationships	are	larger	than	the	errors	encountered	during	
data	collection,	yet	when	these	errors	are	substantial	and	variable	
across	surveys,	abundance	indices	may	not	be	accurate	and	impor-
tant	covariate	relationships	may	be	missed.

An	obvious,	albeit	perhaps	unsatisfying	suggestion	for	address-
ing	 species	 misidentification	 and	 counting	 errors,	 is	 to	 pool	 data.	
Although	grouping	species	records	by	taxonomic	group	or	foraging	
guild	dilutes	information	contained	in	the	data,	it	may	alleviate	some	
species	misidentification	errors	when	 similar	 species	 are	 targeted.	
Pooling	count	data	 to	create	binned	categories	decreases	 the	 res-
olution	of	 available	data	but	may	more	accurately	 reflect	 the	 true	
uncertainty	regarding	the	precision	of	the	survey	count	data	(Guisan	
&	Harrell,	2000;	Valle	et	al.,	2019).	Our	GoMMAPPS	analyses	sug-
gest	that	binning	counts	is	beneficial	for	group	sizes	as	small	as	6–	30	
individuals	and	certainly	for	group	sizes	reaching	hundreds	or	thou-
sands	of	individuals.	Although	ordinal	modeling	is	used	relatively	in-
frequently	in	ecology,	this	framework	offers	a	promising	alternative	
to	modeling	exact	counts	and	can	reflect	uncertainty	in	count	data	
when	 counting	 errors	 may	 be	 present.	 If	 species-	level	 inferences	
are	required,	 researchers	could	explore	data	 integration	with	pub-
licly	 available	 datasets	 (e.g.,	 eBird,	 iNaturalist).	 Data	 integration,	
or	modeling	 that	 incorporates	multiple,	dissimilar	data	 types,	 (e.g.,	
count	data	and	presence/absence	data)	can	yield	more	detailed	in-
formation	about	a	process	of	interest,	including	more	accuracy	and	
precision	 in	 estimates,	 than	 an	 analysis	 using	 a	 single	 data	 source	
(Zipkin	et	al.,	2019).

4.4  |  Digital data collection and future directions

The	last	decade	of	aerial	survey	research	has	seen	a	rise	in	digital	
data	 collection	 methods,	 including	 photography	 and	 video	 col-
lected	 by	 drones	 and	 unstaffed	 aerial	 vehicles	 (Corcoran	 et	 al.,	
2021;	Nowak	et	al.,	2019).	These	technologies	have	the	advantage	
of	being	 less	expensive	than	traditional	staffed	flights	as	well	as	
being	safer	for	research	personnel	as	they	do	not	require	in-	flight	
observations.	However,	a	drawback	to	unstaffed	aerial	vehicles	is	
that	it	is	not	possible	to	cover	as	large	of	a	spatial	area	as	quickly	as	
can	be	done	in	a	traditional	staffed	flight.	Nevertheless,	photo	and	
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video	 observations	 typically	 produce	 higher	 quality	 abundance	
and	density	estimates	than	traditional	in-	flight	observer	methods	
(Buckland	 et	 al.,	 2012;	 Chabot	 &	 Francis,	 2016).	 After	 data	 are	
collected,	 photographs	 and	 videos	 may	 be	 reviewed	 by	 numer-
ous	observers	which	can	allow	researchers	to	utilize	a	number	of	
different	methods	for	estimating	detection	probability,	as	well	as	
identifying	 counting	 and	 identification	 errors.	 However,	 despite	
these	advantages,	this	technology	is	not	immune	to	the	previously	
discussed	 issues.	Manual	 image	or	 video	 classification	 is	 subject	
to	 the	 same	 human	 errors	 of	 nondetection,	 counting	 error,	 and	
especially	species	misidentification	that	in-	flight	observers	expe-
rience	(Chabot	&	Francis,	2016).	Although	photos	and	videos	may	
be	proofed	multiple	times,	this	is	time-	consuming	and	potentially	
costly.	High	resolution	photography	and	videography	is	undoubt-
edly	helpful	 in	resolving	counting	errors,	but	 imagery	must	be	of	
high	enough	quality	that	distinguishing	features	can	be	discerned	
to	differentiate	among	similar	species.

Digital	 object	 classification	 (i.e.,	 machine	 learning)	 offers	 a	
promising	way	forward	for	handling	the	time-	intensive	data	pro-
cessing	required	of	digital	data	collection.	Methods	for	automating	
object	classification	have	improved	in	recent	years	and	are	already	
useful	 for	 reducing	 nondetection	 and	 counting	 errors	 (Torney	
et	 al.,	 2019),	 but	 automated	 species	 identification	 is	more	 chal-
lenging	(Chabot	&	Francis,	2016;	Villon	et	al.,	2020).	Future	work	
on	digital	object	classification	presents	an	opportunity	to	engage	
the	public	to	help	classify	images	that	can	be	used	as	training	data	
for	classification	algorithms	(Torney	et	al.,	2019),	broadening	the	
impact	 of	 research	 beyond	 the	 study	 system	 itself	 (Adler	 et	 al.,	
2020).	Although	digital	methods	may	help	to	combat	some	of	the	
human	errors	observed	in	the	literature	(including	our	own	work),	
these	 technologies	may	also	suffer	some	of	 the	same	shortcom-
ings	as	count	data	collected	by	in-	flight	observers.	Thus,	the	sug-
gestions	presented	in	this	paper	should	be	useful	for	combatting	
errors	in	count	data	collected	both	by	human	observers	and	digital	
methods.

5  |  CONCLUSIONS

Imperfect	detection	can	manifest	as	nondetection,	counting	error,	
and	species	misidentification,	and	all	these	sources	of	error	should	
be	 considered	when	 collecting	 and	 analyzing	 aerial	 survey	 data.	
Although	 counting	 error	 and	 species	 misidentification	 have	 re-
ceived	comparatively	limited	attention	(and	thus	fewer	solutions)	
relative	to	nondetection,	errors	generated	by	all	three	sources	are	
present	and	 likely	prevalent	 in	aerial	survey	count	data.	 Ignoring	
these	errors	or	neglecting	to	address	them	explicitly	could	lead	to	
biased	or	misleading	inferences.	Researchers	should	be	aware	that	
these	 issues	exist	and	take	measures	to	combat	them	during	the	
design,	data	collection,	and	analysis	stages	of	a	study.	Recognizing	
the conditions that can lead to data collection errors can allow 
researchers	 to	 allocate	 resources	 toward	 minimizing	 potential	

errors	or	invest	more	resources	toward	goals	with	fewer	perceived	
challenges.
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