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ABSTRACT Designing wildlife surveys requires biologists to identify their objectives and the accuracy (i.e.,
bias and precision) required to inform them. In southwestern Arizona, USA, abundance estimates and trends
for desert bighorn sheep (Ovis canadensis) rely on detection-corrected aerial surveys (i.e., group-size
estimator) to inform harvest and assess management actions. The accuracy requirements and trend resolution
remain undefined, rendering the surveys ability to address management needs uncertain. We used
simulations based on historical surveys to optimize survey efficiency, estimate the accuracy of alternative
sampling designs, and evaluate if the accuracy produced by this survey meets management needs. Simulations
varied by the amount of area surveyed and temporal frequency. Given annual surveys, we examined trend
detection with alternative significance levels (a spanning 0.05–0.30). Our simulations, which accepted the
survey assumptions, identified many designs producing unbiased and precise estimates (CV <20%).
Alternatives exist for optimizing this survey. For instance, surveying >70% of a Game Management Unit
(GMU) provides similar precision to 100% coverage. Population declines �12%/year are detectable with
annual surveys over a 10-year period when a¼ 0.05. Setting a¼ 0.3 enables detecting declines �14%/year
within 3 years. This survey assumes constant detection, calculated in 1GMU 2 decades ago, and applied to 10
other GMUs since. We tested this assumption by estimating group-size detection from field data in another
GMU for 4 years. Bighorn sheep detection varied across GMUs and survey periods. Abundance estimates
using the new detection rates were approximately 40% lower than current estimates. Our survey evaluation
revealed that differences in abundance of approximately 50% are often not detectable, precision is insufficient
to detect large trends in a timely manner (i.e., 40% decline in 7 years), and assuming a fixed detection process
remains unfounded. Alternative sampling designs that estimate detectability concomitant with the survey,
combined with targeted studies, would better inform management objectives for these desert bighorn sheep.
Our assessment demonstrates the problems that occur when survey requirements are vague or mismatch
survey design, and that monitoring designs incapable of capturing spatial and temporal variation in
detectability will risk misrepresenting animals’ population sizes and trends. � 2018 The Wildlife Society.

KEY WORDS abundance, aerial surveys, detection, double observer, Ovis canadensis, precision, sightability model,
simulation, survey design, telemetry, trend.

Wildlife surveys often provide valuable inference about
animal populations, and typically require significant commit-
ments of time, money, and personnel. Therefore, prior to
survey design, wildlife professionals should clearly identify
their objectives, evaluate if a survey is the best method
to fulfill their objectives, and if so, determine the amount
of survey accuracy (i.e., bias and precision) required.
By adhering to this process, biologists avoid potential

mismatches in survey design, results, and management
needs, thereby improving decision-making capacity and
targeted resource allocations (Legg and Nagy 2006, Nichols
and Williams 2006, Lindenmayer and Liken 2010).
In southwestern Arizona, USA, federal (U.S. Fish and

Wildlife Service [USFWS]) and state (Arizona Game and
Fish Department) agencies use aerial surveys to monitor
population trends of desert bighorn sheep (Ovis canadensis).
These aerial surveys have 2 main objectives: provide accurate
point estimates of bighorn sheep abundance at the resolution
of Game Management Units (GMUs) and detect trends in
bighorn sheep population trajectories in GMUs and
regionally (southwestern AZ). Agencies use these data to
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inform harvest quotas, trigger management (i.e., predator
removal), and appraise the effects of prior management (e.g.,
utility of water catchments, predator control, translocation).
The amount of survey bias and precision (accuracy) required
to achieve these aims remains undefined. Further, the
amount of bias and precision these surveys produce remains
unknown. Clearly, this identifies a problem. Managers
operate surveys and use the results uncertain of whether the
abundance estimates adequately address the management
requirements.
These aerial surveys rely on a group-size detection function,

and occurred from 1992–present in 11 GMUs throughout
southwestern Arizona (Conroy et al. 2014; Fig. 1). Recently,
Conroy et al. (2014) evaluated and improved this survey by
developing a new, state-space modeling approach to quantify
variation in bighorn sheep abundance estimates in each
GMU, and to describe regional abundance and population
dynamics. Conroy et al. (2014) identified 2 factors
contributing to low precision in the survey estimates. First,
data used to build the group detection probability (i.e.,
sightability) were restricted to group sizes<9 bighorn sheep,
although subsequent surveys often contained larger group
sizes. Addressing this issue requires additional sightability

trials. The second factor is poor temporal continuity in survey
data within and across GMUs because annually sampling of
100% of habitat for desert bighorn sheep in each GMU is
cost prohibitive.
We evaluated this survey and the information it provides to

improve management of desert bighorn sheep, and to inform
survey design and implementation for other wildlife
elsewhere. Specifically, we addressed 3 topics. We first
focused on tradeoffs between 2 survey elements: the amount
of spatial coverage of a survey within a GMU, and the time
between surveys on any given GMU. We examined these
tradeoffs to identify the most informative and efficient survey
designs for estimating bighorn sheep abundance and trend.
The most intensive survey design covers 100% of a GMU’s
area every year (i.e., complete spatial and temporal coverage).
We simulated this scenario to exemplify the greatest
precision and least bias obtainable (i.e., best-case approach).
Other designs we tested reduced spatial and temporal
coverage of GMUs, allowing us to assess tradeoffs between
the losses in precision and gains in efficiency. Obviously,
providing similar results with reduced effort saves costs and
increases operational safety (i.e., reducing flight time).
Second, we calculated the bias and precision these surveys
produce, and examined if survey accuracy is suitable for
answering the management needs. By examining these
topics, we determined how much reduction in effort,
spatially and temporally, could ensue before compromising
the accuracy of abundance estimates and trends given the
current survey design and its assumptions.
Operationally, these bighorn sheep surveys rely on a

detection function built in 1 GMU during 1993–1995 and
applied to the other 10 GMUs in southwestern Arizona
since. Detection functions calculated in 1 location and period
may not apply to other locations and periods, potentially
confounding inferences about variation in abundance over
space (GMU) and time (survey period). Therefore, as the
third step, we calculated detection for groups of desert
bighorn sheep in a different GMU (different from the
original study GMU) for 4 years (each year separately),
assessed variation in detection across locations and time, and
compared abundance estimates to those predicted using the
current survey methods. Our objectives center on optimizing
this survey design for estimating bighorn sheep abundance
and trend, given the current group-size estimator approach,
and evaluating if this survey design produces credible
estimates with acceptable levels of bias and precision to
inform management objectives and needs.

STUDY AREA

The study area (i.e., GMU 45) has annual precipitation
ranging from approximately 76–400mm. Elevations span
broad valleys (elevations of �500m) interspersed with steep
and rugged mountains (elevations of �1,500m). The GMU
46 study area encompassed approximately 350,000 ha in
Pima and Yuma counties, Arizona. The surveys occurred in
the Sierra Pinta and Cabeza Prieta mountains, which had
rugged topography with slopes commonly >568 and
elevations peaking at �900m (Cain et al. 2008). Game

Figure 1. Location of 11 GameManagement Units (GMUs, gray shading)
receiving abundance surveys for desert bighorn sheep in southwestern
Arizona, USA. This project occurred at GMU45, GMU46, and the Cabeza
Prieta Mountains (CPMtns) and Sierra Pinta Mountains (SPMtns) within
GMU 46. Previous research calculated detection of desert bighorn sheep
groups in GMU 45 for 1993–1995 and this detection rate has been used to
estimate abundance in the other GMUs since. In combination with previous
research, we calculated detection functions for desert bighorn sheep group
sizes in eachmountain range of GMU 46 for 2002–2005.We also used these
detection functions to estimate abundance in this unit during these years.
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Management Unit 46 experiences approximately
50–160mm of rainfall/year, with more occurring eastward.
Wildlife refuges in both GMUs (Kofa National Wildlife
Refuge [NWR] and Cabeza Prieta NWR) were established
to bolster desert bighorn sheep populations. According to the
present survey method, mean abundances of desert bighorn
sheep are approximately 500 in each area (Conroy et al. 2014,
2015). The areas also contain populations of mule deer
(Odocoileus hemionus), Sonoran pronghorn (Antilocapra
americana sonoriensis), coyotes (Canis latrans), and numerous
reptile species. Vegetation and other characteristics of the
study areas are addressed in Hervert et al. (1998) and Cain
et al. (2008).

METHODS

Desert bighorn sheep have been counted at GMU 45
(centered on Kofa NationalWildlife Refuge [NWR]) and 10
other GMUs throughout southwestern Arizona since the
early 1980s via aerial surveys (Fig. 1). Because the group-size
estimator was developed at GMU 45, and GMU 45 has the
longest regular series of surveys in comparison to other
portions of the region, data from GMU 45 have been used to
evaluate the group-size estimator (Conroy et al. 2014, 2015).
Individual GMUs have been completely surveyed (100% of
the area of a GMU flown) since 1992, but typically not every
year.
The survey approach produces abundance estimates by

using a modified group-size estimator (Samuel et al. 1987;
Fieberg 2012; Conroy et al. 2014, 2015). The method
combines sightings of radio-marked groups (i.e., telemetry;
Hervert et al. 1998) to estimate group size-specific detection
rates for adjustment of counts from operational surveys. This
estimation approach has been described in detail, evaluated,
and used to obtain estimates of abundance and trends for
GMU 45 and the other 10 GMUs from 1992 to 2012
(Conroy et al. 2014, 2015 [1992 estimate calculated
retrospectively, after construction of the detection function]).
We used these estimates for examining alternative spatial and
temporal sampling frequencies. The GMU 45 study area and
survey procedures are described in Hervert et al. (1998), with
additional operational details provided by Conroy et al.
(2014).

Simulation to Examine Bias and Precision of Abundance
Estimates
Our method combined historical survey data and simulation
modeling to evaluate the performance of alternative survey
designs, focusing on the estimation of abundance and
detection of trends while accounting for variations in
incomplete spatial and temporal coverage.We first addressed
the influence of spatial coverage on the accuracy of
abundance estimates for a single survey (specified GMU
and year). The density of desert bighorn sheep varies
throughout the landscape covered by the survey. Our
simulation accounts for this spatial heterogeneity in density.
To begin, for specified GMU abundance (N), we specified
density of individuals (l) per each of the M sample units in
the GMU as:

l ¼ N=M :

We considered the area sampled as a fraction of M¼ 100
equal-area spatial sampling units comprising the entire area,
withm¼ fM of these taken as sample plots, where f indicates
the proportion of area sampled (M and m correspond to N
and n in Fieberg (2012) and are used here to avoid confusion
with N signifying abundance). We assumed a constant
proportional allocation of individuals to group sizes across
the GMU i¼ 1,2, ...M for sampling unit i, so that numbers
per group size were simulated (via a Poisson distribution):

Ngi
� Poisson lpg

� �
; i ¼ 1; . . . ;M ;

where pgwas the proportion of the population in each group
size g, estimated from the previous group-size study (Conroy
et al. 2014). Finally, we obtained numbers of groups of each
size as:

Cgi
¼ Ngi

=ng ;

where ng is the number of individuals in group-size category
g (i.e., group size 3 has 3 sheep). In this study we used 6
group-size categories: 1–5 and 7, the latter representing the
pooled original categories of 6, 7, and �8 sheep/group
(Conroy et al. 2014).
We simulated group-size data for the detection models by

passing through each of the m units sampled and generating
observed counts as binomial outcomes conditional on the
numbers of groups in each unit and predicted detection
probability:

cgi � Binomial Cgi
; p̂g

� �
;

where p̂g is the probability of detection for each group-size
category, predicted from the calibration study in Conroy
et al. (2014). We then used the group frequencies over all m
sampled units as input for the detection model and repeated
the process 500 times to evaluate estimator precision and
bias. The approach assumes a constant, proportional group-
size distribution. In earlier simulations, we generated group-
size frequencies Cgi by a multinomial process but found that
the resulting simulations exhibited higher variability than
observed empirically, and thus we employed the above,
simpler approach.
We then used the calibration (experimental) data from

GMU 45 (Hervert et al. 1998) and simulated data for each
year to estimate abundance by detection models (Fieberg
2012; Conroy et al. 2014, 2015). We considered hypotheti-
cal, known abundance (N) in the range of 100 to 1,000 per
GMU and f of 0.1 to 1.0. For each combination ofN and fwe
replicated the simulations 500 times and computed relative
root mean squared error (RMSE) as:

RMSE N̂
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE N̂

� �q
N

;
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where

MSE N̂
� � ¼ 1=500

X500
j¼1

N̂ j �N
� �2

and N̂ jwas estimated abundance in replication j. We also
computed relative bias (RBIAS) and coefficient of variation
(CV) as:

RBIAS N̂
� � ¼ BIAS N̂

� �
N

and

CV N̂
� � ¼ Var N̂

� �
N

;

where

BIAS N̂
� � ¼ 1=500

XJ
j¼1

N̂ j �N
� �

and

Var N̂
� � ¼ MSE N̂

� �� BIAS N̂
� �2

:

Finally, we obtained bootstrapped confidence intervals for
N̂ from the lower and upper 2.5% quantiles of the simulated
estimates.

Simulation to Examine Tradeoffs in Survey Design to
Measure Trend
To explore tradeoffs between survey period and spatial
coverage, we conducted a simulation study motivated by the
state-space model for estimating abundance (Conroy et al.
2014). First, we simulated population growth according to a
state-space model developed by Conroy et al. (2014):

Ntþ1 ¼ Ntexp rt½ �;

where Nt is abundance (whether directly estimated, or not)
for a single GMU and rt is log-scale growth rate in year t. We
modeled log-scale growth rt as a normally distributed
random effect

rt � N �r; stð Þ;

where�r is average log-scale growth and st is a scale parameter
controlling for temporal variability.We took initial abundance
as N1¼ 500 (in the range of values estimated for GMU 45
during 2007) and st ¼ 0:179 from the 1992 to 2012 state-
space analysis (Conroy et al. 2014). The results inConroy et al.
(2014) indicated strongest support for a model specifying the
above random, temporal effect and GMU-specific mean
growth, with some GMUs exhibiting positive and others
negative growth.However, we were interested in the ability of
alternativedesigns todetecthypothetical trends.Therefore,we
specified trend from �1% to �30%, corresponding to values
for�r ¼ log 1þ trend=100ð Þ of approximately�0.01 to�0.36.
We also simulated trajectories forNt with this range of values
for �r, from the initial value of N1¼ 500 and st ¼ 0:179. The

simulated trajectory thus contained a fixed effect given a
loglinear trend inN from the state-space model and a random
effect of normally distributed rt, conditioned on �r and st .
For each simulated trajectory of Nt, t¼ 1, ... ,20, we first

selected a subset of years that would be used for estimation of
trends, using intervals between surveys of 1 (annual surveys)
to 10 years. For each subset of years, we simulated observed
group-size frequencies as above, now conditional on Nt.
Once we obtained the estimates of Nt for each year in the
state-space model, we fit the estimates to a log-linear model
using ordinary least-squares regression (package lm in R; R
Foundation for Statistical Computing, Vienna, Austria):

log N̂ t

� � ¼ b0 þ b1t

with b̂1 taken as an estimate of mean log-scale growth. This
approach, though not conforming to the state-space process
model, produces estimates that are similar to the state-space
estimates of �r but are computationally faster. The process
allows us to replicate multiple simulation trials and explore
the implications of alternative sampling designs on detecting
specified trend levels. For each simulated trajectory of N we
likewise estimated b̂1 and took this as realized true growth for
computation of bias and mean squared error. We replicated
the simulations 1,000 times for each combination of trend,
spacing, and the fraction of area sampled. We computed
RMSE and bootstrapped confidence intervals for b�r from the
lower and upper 2.5% quantiles of the simulated estimates.
We provide the programs and data to simulate abundance
and trends for these surveys of desert bighorn sheep at
https://sites.google.com/site/mjconroybiometrics/resources/
dbs/optimal-design.
Lastly, because a 20-year period is too long for biologists to

act toward addressing population changes, we also examined
the amount of population decline per year that this survey
detects over a 3- to 10-year period given annual surveys. We
relaxed a from 0.05 to 0.10, 0.20, and 0.30 to examine
tradeoffs between trend resolution, time, and Type 1 error
(GMU spatial coverage held at 100%). By tolerating a greater
chance of falsely declaring a trend (Type 1 error), one
decreases the chance of missing a real trend (Type 2 error). In
particular, under a cautionary principle, managers would be
more concerned about failing to detect a population decline,
and thus willing to risk the occasional false alarm.
Essentially, the risks of failing to address population declines
seem greater than incorrectly identifying them.

Detection Assessment
We tested the assumption that detection was constant across
all GMUs by using a simultaneous double-count method to
estimate detection of desert bighorn sheep in GMU 46
(Graham and Bell 1989, Cain et al. 2008). Cain et al. (2008)
surveyed each mountain range in mid-October to early
November from 2002 to 2005 using a helicopter (Bell 206B
JetRanger and Bell 206L LongRanger; Bell Helicopter
Textron, Fort Worth, TX, USA) and conducted 2
independent surveys in 2003. Cain et al. (2008) attempted
to standardize factors that may influence survey results.

1152 The Journal of Wildlife Management � 82(6)
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Researchers flew all surveys at the same time and at constant
survey intensity of 2.9min/km2 (Hervert et al. 1998). Three
observers participated in all surveys: 1 observer on each side
of the helicopter in the rear seats and 1 observer in the front
left seat. The pilot was in the front right seat and was not an
observer; we used only the 2 left side observers for detection
calculations. Although the individual observers varied
somewhat throughout each survey of each mountain range,
the same 5 personnel were observers on all surveys. Each
observer independently searched for desert bighorn and
observers did not alert others to the presence of desert
bighorn sheep until the rear of the helicopter had passed the
animals. Then, the pilot circled back to collect data on group
size and composition. We recorded all groups as being
observed by either the front observer only, the rear observer
only, or both observers.
We calculated detection probabilities for single animals and

groups of animals for each survey in each mountain range.
We followed Graham and Bell (1989) to calculate the
detection probability and variance for the front observer only
(Ŝ1), the rear observer only (Ŝ2), and the probability that an
animal will be observed by �1 left side observer (Ŝ) using
Chapman’s (1951) correction as:

bS1 ¼ B

S2 þ B

bS2 ¼ B

S1 þ B

bS ¼ B þ 1ð Þ S1 þ S2 þ Bð Þ
ðS1 þ B þ 1Þ S2 þ B þ 1ð Þ � B þ 1ð Þ

Var bS� �
¼ S1S2 S1 þ S2ð ÞbS

S1 þ Bð Þ2 S2 þ Bð Þ2 ;

where S1 and S2 are the number of groups seen by the front
and rear observers only, and B is the number of groups seen

by both observers. The original data collection followed
institutional animal care and use protocols in effect at the
time of data collection.

RESULTS

Estimate Precision
The simulated surveys provided abundance estimates that
were nearly unbiased (RBIAS <3%) regardless of N or f
(proportion of GMU surveyed), so we focused on precision,
measured by CV (Fig. 2). In practice, the CVs realized for
the 1992–2012 surveys in southwestern Arizona ranged from
0.06 to 0.56 and averaged 0.15. The intensity of spatial
sampling and the size of N influenced survey precision.
Specifically, surveys with 100% spatial sampling andN of 100
sheep resulted in a CV approximately 20% (Fig. 2; Table S1,
available online in Supporting Information; 4 GMUs have
approximately 100 sheep [Conroy et al. 2014, 2015]). When
sheep abundance is 200, surveys with >50% coverage result
in a CV <20% (Fig. 2; Table S1; 5 GMUs have
approximately 200 sheep [Conroy et al. 2014, 2015]).
With abundances of 500 sheep, a CV <20% occurs when
surveying>20% of a GMU (Fig. 2; Table S1; 2 GMUs have
approximately 500 sheep [Conroy et al. 2014, 2015]). With
1,000 sheep, the CV is always <20%, falling to <10% when
surveying >40% of the GMU (Fig. 2; Table S1; no GMUs
have approximately 1,000 sheep [Conroy et al. 2014, 2015]).
Irrespective of abundance, there is little gain in precision by
surveying >70% of the GMU. The average reduction in CV
from 100% GMU coverage to 70% coverage across
population sizes of 100–1,000 (increments of 100) is
1.7� 0.81% (SD; Table S1).
We evaluated the ability of this survey to discriminate

between 2 abundance estimates within a GMU (i.e., identify
change between 2 population estimates). Results depended
on estimated abundance, the proportion of GMU surveyed,
the magnitude of change in the population, and the precision
biologists require. For example, given N of 200, a 20% CV

Figure 2. Coefficient of variation (CV) of estimated abundance from detection data for desert bighorn sheep in southwestern Arizona, USA, 1992–2012
(Conroy et al. 2014) versus proportion of area surveyed within a Game Management Unit.

Conroy et al. � Evaluating Desert Bighorn Surveys 1153
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(50% GMU sampling) provides estimates approximately
� 74 sheep (Table S1). A subsequent survey resulting in a
50% population increase (300 sheep) is unable to identify a
significant change in abundance at any level of GMU
sampling (i.e., the CIs overlap [a¼ 0.05]; Fig. 3). A
population doubling (400 sheep) would be detectable with
sampling >40% of a GMU (CV 14%; Table S1).

Trend Resolution
Surveys using the group-size estimator began in 1992 and
our data series ends at 2012. Over a 20-year period, trends
�8%/year were virtually undetectable (a¼ 0.05). However,
trends �10%/year were detectable under many designs (e.g.,
30% coverage and 6-year survey period; 50% coverage and 8-
year survey period) suggesting opportunities for strategic
tradeoffs (Fig. 4).
Understanding population trends in shorter periods will

allow biologists to pursue management actions sooner.
Therefore, we examined the ability of this survey to detect
declining population trends over 3–10 years, given annual
survey intervals, 100%GMU coverage, and varying precision
(Fig. 5). Our results identify the smallest amount of trend in
population decline that a scenario can reliably detect. When
a¼ 0.05, the survey can detect a 12% population decline over
a 10-year period (Fig. 5). In other words, a sheep population
must be declining by �12%/year for a 10-year period (95%
CI¼�26.00%, �0.04%) for this survey to identify that a
decline is happening. Within a 3-year and 5-year period,
annual surveys can reveal a population decline occurring
when the population is declining by �26% (95% CI¼
�58.6%, �3.4%) and 18% (95% CI¼�39.0%, �1.1%) per
year, respectively (Fig. 5; i.e., decline from 500 to 226
individuals across 5 years with an 18%/year decline).
Given a¼ 0.10, the survey can detect a �11% decline/year

in 10 years (90% CI¼�22.2%, �1.0%). With a¼ 0.20, the
survey can detect a �10% annual decline over 10 years (80%
CI¼�19.4%, �2.4%; Fig. 5). Were there 500 sheep in year

1, a 10% annual decline over 10 years would result in 193
sheep by year 10 (68 sheep in year 20). Trend detection for
a¼ 0.20 for 3 years is the same as a¼ 0.05 for 5 years (18%
annual decline; Fig. 5). With a¼ 0.30, the survey can detect
an 8% decline/year over 10 years (70% CI¼�15.8%,
�1.4%) and 14% decline in 3 years (70% CI¼�30.3%,
�0.2%; Fig. 5). In keeping with our example using 500
sheep, 370 would remain after 3 years given a 14% annual
decline. With a¼ 0.30, there exists a 30% chance of
identifying a population decline when none exists.

Detection Assessment
In Unit 46, each mountain range was surveyed once per year
in 2002, 2004, and 2005 and twice in 2003 (Table 1). The
Sierra Pinta range was broken down into 4 survey blocks,
which took an average of 5.3� 0.45 hour each year to cover
all 4 blocks. The Cabeza Prieta range was divided into 6
survey blocks, which took an average of 7.7� 0.55 hour each
year to cover all 6 blocks.
During aerial surveys in GMU 46 from 2002 to 2005, left-

side observers recorded 91 and 126 groups of desert bighorn
sheep in the Sierra Pinta and Cabeza Prieta Mountains,
respectively. The number of groups per survey recorded by
�1 left-side observer ranged from 16 to 21 (�x¼ 18.2� 1.93
groups/survey) in the Sierra Pinta and 23–29 (�x¼ 25.2
� 2.34 groups/survey) in the Cabeza Prieta Mountains.
Group size did not differ by survey (F4, 217¼ 1.43;
P¼ 0.227) or range (F1, 217¼ 2.47; P¼ 0.118). Group sizes
were small in both mountain ranges, ranging from 1 to 9
animals/group (�x group size of 2.24� 1.96 sheep/group in
the Sierra Pinta and 1.88� 1.47 sheep/group in the Cabeza
Prieta Mountains). Single animals represented 51.6% (47 of
91 observations) and 61.1% (77 of 126 observations) of all
groups observed in the Sierra Pinta and Cabeza Prieta
Mountains, respectively.
Detection varied within and between mountain ranges and

years (Table 1). Within the same location and group size,

Figure 3. Simulated confidence intervals (dashed lines) for estimating abundances of desert bighorn sheep in southwestern Arizona, USA, in relation to
specified proportion of area sampled within a Game Management Unit (1992–2012).
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detection could vary by 62% across time. Across locations,
within the same group size and year, detection could vary by
68% (once detection was identical [Table 1]). Any
similarities and differences in detection were unpredictable
between locations and time (Table 1). The detection
probabilities in the Sierra Pinta and Cabeza Prieta
Mountains differed from the detection probability calculated
in GMU 45 by 1.0–52% for group sizes of 1 to �3 sheep
(Conroy et al. 2014).
We illustrated the effects that different detection estimates

have on abundance estimates, by predicting abundance in
GMU 46 with the detections in current use (i.e., generated in
GMU 45 between 1993 and 1995) and with detections
calculated in GMU 46 (2002 and 2005). The current survey
(using detection estimates from GMU 45) estimates
approximately 350 desert bighorn sheep in GMU 46 for
2002 and 2005 (�x estimate; Fig. 6; Conroy et al. 2015). For
GMU 46, we kept the group-size data and estimation model
identical to the current survey but replaced the GMU 45
detections with the detections calculated for GMU 46 (in the

Sierra Pinta and Cabeza Prieta mountains, respectively). The
abundance estimate for desert bighorn sheep in GMU 46,
using the GMU 46 detection, was between 200 and 240
sheep, or approximately 40% less (�x estimates; Fig. 6). The
abundance estimates resulting from the different detection
estimates are so different that their confidence intervals do
not overlap (Fig. 6).

DISCUSSION

Estimate Precision
Assuming a constant detection process across space and time,
multiple survey designs for desert bighorn sheep provide
unbiased and precise estimates of abundance at the GMU
level. Based on the empirical data and simulations, a CV
�20%, a value commonly regarded as standard (Williams
et al. 2002), can be consistently obtained using this survey.
Most abundance estimates of sheep over 1992–2012
achieved this standard of precision, with some estimates
approaching a CV of 10% (Conroy et al. 2015; Table S1).
Our results suggest that wildlife managers could reduce the
amount of GMU surveyed and acquire adequate precision
(�20%), given the abundance of bighorn sheep in the GMU.
For instance, populations of 500 sheep can be sampled with
>40% spatial coverage and acquire 14% CV (Fig. 2;
Table S1). In all cases, there is little gain in precision by
sampling >70% of a GMU (Fig. 2). Managers can use this
information to evaluate if the gains in precision warrant the
additional costs.
The amount of effort and precision requiredmust match the

needs for the survey. For example, biologists are often
concernedwith changes inpopulation size.Givena surveywith
10%CV and surveying 70% of theGMU, a population of 500
sheep must increase to 800 sheep before the estimates are
considered statistically different (Table S1). A 20%CVwould
require a population exceeding 1,000 sheep before differences
were detectable (Table S1). Our results indicate that the
current surveymethodology generally lacks sufficient power to
detect considerable changes in abundance (i.e., 50%).

Figure 4. Simulated confidence intervals (solid lines) on estimates of mean growth rate (�r; dashed lines) of desert bighorn sheep in southwestern Arizona, USA,
for combinations of specified �r ¼ log 1þ trend=100ð Þ for various proportions of area sampled (30–100%) and survey intervals (n¼ 1–10 years between surveys
over 20 years [1992–2012]). An upper confidence limit exceeding �r¼ 0 (dotted lines) indicates failure of design to reject the null hypothesis of population
stability (a¼ 0.05). Trend equals �10%.

Figure 5. Simulated estimates of mean growth rate (�r, labeled trend) for
desert bighorn sheep in southwestern Arizona, USA, given combinations of
specified �r¼ log (1þ trend/100) with varying a (0.05–0.30) and time (3
years [gray], 5 years [solid black], and 10 years [dashed black]), given annual
surveys and 100% spatial coverage of a Game Management Unit.

Conroy et al. � Evaluating Desert Bighorn Surveys 1155
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Trend Resolution
Relationships between the amount of GMU to sample and
the frequency of surveys depend on the magnitude of the
trend required. For this survey, designs are incapable of
detecting declines <10%/year over a 20-year period
(a¼ 0.05; Fig. 4). Coarser trends (i.e., �10% decline/year
over 20 years) are detectable under a number of design
combinations, allowing flexibility in the allocation of effort,
be it GMU spatial coverage or temporal frequency (Fig. 4).
Allowing larger Type 1 error (e.g., a¼ 0.3) enables detecting
smaller declines (e.g., 8% decline/year over 10 years or 14%
decline/year over 3 years; Fig. 5). This outcome requires
annual surveys with 100% coverage and accepting a 30%

chance of identifying population declines when none may
exist.
These results examining trend could be considered

optimistic, best-case scenarios because they rely on a simple
log-linear (exponential) model of growth, and not more
complex (e.g., density-dependent) growth models. Any
deviations from these conditions would further degrade
trend resolution.
In practice, 9 of the 11 GMUs typically had a survey

interval of 3 years (i.e., survey conducted in year 1 then again
in year 4). Hence, a 3-year survey interval appears the scale
that biologists attempt to judge population trends with this
survey. Given this interval, the shortest, detectable trends
occur on a 7-year timeframe (i.e., 3 data points). We suggest
7 years is too long for biologists to meaningfully address
population changes because relatively small annual changes
(i.e., �8%) can generate relatively large cumulative changes
over a 7-year period (i.e., �40% decline in abundance).
Annual surveys within 3 years are capable of detecting a 14%
annual decline (36% total decline in a 4-year period, a¼ 0.3;
Fig. 5). The measured population decline between these
examples is essentially identical (i.e., registering a �40%
decline before considering management response), rendering
the resolution of a 14% annual decline over a 4-year period
perhaps equally unacceptable.
Whether trend detection or identifying population change

assists bighorn sheep management depends on reasons for
collecting these data and the risk of being wrong (i.e.,
identifying declining trends when such trends do not exist).
If this survey continues unmodified, we consider the risk of
being wrong lower than the risk of failing to detect a strong
trend or change, justifying use of a larger a (i.e., 0.30) and
shorter interval (i.e., 3 years). Regardless, our evaluation
reveals that this survey does not provide sufficient precision
in abundance estimates to identify if meaningful trends are
occurring over useful periods (per above).

Survey Assumptions and Assessment
Inference from these bighorn sheep surveys in southwestern
Arizona requires adhering to 3 assumptions: observers

Table 1. Detection and variance estimates by group size for desert bighorn sheep from aerial surveys conducted using a simultaneous double count method in
the Sierra Pinta andCabeza Prietamountains, Cabeza Prieta NationalWildlife Refuge (GameManagement Unit 46), USA, 2002–2005. Year 2003 contained 2
independent surveys (a and b).

Group size

1 2 �3

Year Detection Variance Detection Variance Detection Variance

Sierra Pinta
2002 0.909 0.011 0.857 0.094 0.882 0.035
2003a 0.818 0.055 0.882 0.035 0.923 0.022
2003b 0.727 0.055 0.857 0.094 0.667 0.104
2004 0.727 0.055 0.857 0.094 0.571 0.084
2005 0.579 0.089 0.923 0.022 0.857 0.043

Cabeza Prieta
2002 0.692 0.029 0.769 0.117 0.857 0.094
2003a 0.854 0.012 0.800 0.011 0.882 0.035
2003b 0.949 0.004 0.923 0.022 0.968 0.003
2004 0.957 0.003 0.923 0.014 0.960 0.003
2005 0.712 0.038 0.800 0.111 0.857 0.427

Figure 6. Three sets of abundance estimates for desert bighorn sheep at
GameManagement Unit (GMU) 46 (encompassing Cabeza Prieta National
Wildlife Refuge) varying by the detection parameter used. Previous research
in GMU 45 generated detection functions during 1993–1995 and they have
been employed in GMU 46 and 10 other GMUs since. Previous research
also generated detection functions (sightability) for the Cabeza Prieta
Mountains and Sierra Pinta Mountains in GMU 46, independently during
2002 and 2005. These abundance estimates rely on the same calculations and
group-size data for GMU 46, for a given year (only the detectability
changes). Mean abundance estimates for GMU 46 using detections from
GMU 46 are approximately 40% lower than estimates using the detections
calculated from GMU 45, and the confidence intervals (black bars) do not
overlap.
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identify group sizes of desert bighorn sheep accurately (i.e.,
when seen, a group of 5 sheep is not classified as 4 or 8 sheep),
the detection function for group size derived from 1 GMU
applies to the other 10 GMUs, and the detection function
remains constant across time, observers, and varying survey
conditions (i.e., the ability to observe and tally sheep groups
never changes). We have shown the last 2 assumptions are
untenable.
Counting bighorn sheep is an imperfect process. Changes

in abundance estimates can reflect an observer’s ability to
detect sheep and sheep behavior or movements, and not
indicate true changes in the sheep population. Therefore, the
group-size estimator, which produces a detection-corrected
estimate of abundance, should account for the detection
process of sheep groups and membership (i.e., membership
meaning a group classified as 5 is truly 5 bighorn sheep;
Clement et al. 2017). Instead, the parameters used in the
group-size estimator that describe the detection process for
groups were generated during 1993–1995 and remained in
use for multiple observers, under various survey conditions
(e.g., light levels, weather) in 10 different locations, for over
20 years (Conroy et al. 2014, 2015). The technique does not
allow the detection process to vary among observers, sites,
and conditions. Instead, the detection process only varies by
bighorn sheep group sizes. Therefore, the estimates of sheep
abundance produced by the group-size estimator are biased,
because a non-constant detection process exists as evidenced
by the varying detection rates obtained over time for GMU
46 using the double observer approach. Such bias, in addition
to the uncertainty we have already identified, overshadow the
true population dynamics of sheep in southwestern Arizona.
When estimation of the detection process is not inherently

part of the survey technique, a survey will remain plagued by
assumptions of a constant detection process across observers,
sites, and time (Lancia et al. 2005). Changing detection rates
across location and time often occurs for multiple taxa
elsewhere (Lancia et al. 2005, Griffin et al. 2013, Gibson-
Reinemer et al. 2016, Stewart et al. 2017).
Using telemetry to determine the detection process forms a

good approach because it attempts to account for animals
that are in the survey area but unavailable to be seen and
recorded by observers (i.e., accounts for probability of
detection and availability probability). For desert bighorn
sheep, this could be sheep behind rock outcrops or in caves.
The double observer method for estimating the detection
process does not account for such hidden animals (i.e.,
accounts for detection probability but not availability
probability; Hervert et al. 1998). Therefore, the double
observer approach is more likely to estimate a higher
detectability than a technique based on telemetry. If true,
then the population estimates generated from the double
observer technique would be lower than estimates using
telemetry (Caughley et al. 1976). Data from Hervert et al.
(1998) and our results provide evidence for this outcome.
Unfortunately, the actual (i.e., true) abundance of desert
bighorn sheep remains unknown in these GMUs, negating
formal comparisons between these techniques. Given this
situation, the better method is the one that meets sampling

assumptions, is logistically feasible, and remains sustainable.
In our assessment, because the double observer approach
meets sampling assumptions better (i.e., does not assume a
constant detection process across locations and years), it
provides the more credible abundance estimate for the survey
years in GMU 46.
Evaluating the performance of double observer or

telemetry-based approaches to a known abundance was
beyond the scope of this project. Regardless, irrespective of
the absolute veracity of the double observer approach we
used, it reveals that the detection process varies considerably
through time and space.
We are not promoting one survey technique over the other.

Instead, we emphasize that detection must be estimated
during each survey process, irrespective of the technique
used, to ensure that the resulting abundance estimates are
unbiased by observers and survey conditions. A survey using
telemetry that generates detection concomitant with the
survey would also provide a credible abundance estimate.
Support to continue using a constant detection process

across time and space is based on the costs necessary to obtain
detection rates (especially with telemetry), the idea that
constant detection represents the best information available,
and the assumption that if the surveys’ detection rates remain
consistent over time, then population trends and estimates
are close enough. We contend that approximate data are
obtainable via other, more affordable methods (i.e.,
minimum count), best information may misrepresent truth,
and the tool (method) should match the job requirements
(objectives). The accuracy of data required depends on how
they will be used, the risk of being wrong, and the importance
of being right.
The sustainability of using telemetry to estimate detection

for each survey location and period remains challenged by the
expense and logistical effort to maintain telemetry on
animals. This may cause other techniques, like double
observer to become more tenable. Formal comparisons of
abundance estimates obtained from double observer,
telemetry, and similar methods form the only way to
examine their accuracy and tradeoffs.

Survey Consequences
The unbiased abundance estimates and precision we
calculated herein occur because data used to simulate and
test bias and precision adhered to this survey’s assumptions.
Because these assumptions are untenable, the abundance
estimates produced by this survey do not reflect the true
abundance of sheep in a GMU. The resulting estimates are
biased by unknown and varying magnitudes because true
changes in the detection process through time are unknown.
Tangible outcomes of not accounting for variation in the
detection process include wide fluctuations in abundance
estimates between years within GMUs and across GMUs
(Conroy et al. 2015). The wildly stochastic (st¼ 0.179)
nature of these sheep populations provides further evidence
for such a problem (Conroy et al. 2015).
Presently, federal and state wildlife agencies use these

surveys for informing harvest levels (i.e., hunting), and
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appraising management actions to promote abundance
increases (i.e., translocation, predator control [USFWS
2009]). Harvest of desert bighorn sheep in Arizona is male-
only, conservative, and based primarily on 15–25% of the
estimated class III and IV males observed during surveys.
Little precision in abundance estimates is required for such
assessments, making lower quality data appear sufficient for
informing harvest quotas.
Pitfalls occur, however, when such low-quality data (i.e.,

minimum counts or this survey in its current design) are used
to assess deeper ecological questions such as the causes for
population trends or testing the efficacy of management
actions. Biologists use data from this survey to recommend
when to conduct and cease predator control (USFWS 2009).
When the bighorn sheep population falls below a numerical
threshold, predator control can be implemented and when it
reaches a higher numerical threshold, predator control can
cease (USFWS 2009). Given the ethical and political
sensitivities surrounding predator control, greater certainties
in survey results seem desirable.
Instead of using an abundance survey to monitor the effects

of predation or translocation on population growth, a
concerted study of cause-specific mortality and other factors
affecting population growth (e.g., disease, habitat condition,
immigration and emigration; Sæther 1997) would likely be
more informative. Granted, given the multitude of factors
influencing population growth, these types of studies are
ecologically complex and expensive.
If the group-size estimator had accounted for variability in

detection across GMU and time, would it have changed the
management of desert bighorn sheep in this area? The
answer depends on the decisions made based on these data.
We lack information about these decisions. However, within
the field of wildlife biology, too frequently wildlife surveys
will dictate the management, when the opposite should be
true. This appears to be the case for the desert bighorn sheep
surveys in southwestern Arizona. Therefore, any manage-
ment shaped by abundance and trend data (e.g., harvest,
translocations, predator control, target abundance thresh-
olds) would be affected (to unknown degrees) because they
were influenced by biased estimates.

Potential Improvements
The technique of using detection of group sizes for
estimating abundances seems sound if the relationship
between group size and detectability is accounted for during
each survey. Further, future surveys could reduce variance
more. For example, the survey could incorporate additional
explanatory variables into its calibration and operation (e.g.,
aircraft speed, altitude, lighting conditions, topography,
vegetation, and observer experience) in addition to a wider
range of group sizes (Samuel et al. 1987; Strobel and Butler
2014; Conroy et al. 2014, 2015). A parameter accounting for
individuals within groups that were missed by observers
would also reduce bias and uncertainty in the abundance
estimates (Conroy et al. 2014, Clement et al. 2017).
The major flaw centers on implementation that uses the

same detection across locations and time. Hervert et al.

(1998) recognized that detection probabilities they reported
in GMU 45 may not apply to other areas having significantly
different habitat characteristics. Our analyses confirm that
detection probabilities gained in 1 location may not apply to
another location, and we extend this premise to include
changes in time. The only way to address varying detection
between surveys is by having the detection process estimated
during each survey. For instance, the USFWS Breeding
Ground Waterfowl Surveys combine aerial counts with a
subsample of ground counts (taken as a close approximation
of truth) to build predictive relationships for deriving
visibility correction factors (VCF) by vegetation type,
species, and survey (Zimmerman et al. 2012). A VCF is
analogous to the detection model adjustments for group sizes
of desert bighorn sheep except it can vary across space and
time. A similar approach could use telemetry or a double
observer approach on a subsample of sheep surveys to build
the detection models (as we performed herein). For large
mammals, abundance surveys incorporating detection prob-
ability are becoming increasingly common (Jacques et al.
2014, Lubow and Ransom 2016, Smyser et al. 2016).
Elsewhere, many other examples of detection applications
(e.g., distance sampling, mixture models based on repeated
counts, mark-resight, subsampling, hybrid models) include a
calibration (i.e., experimental) sample within the survey
design (Fieberg 2012, Schmidt et al. 2012, Schmidt and
Rattenbury 2013). For example, The New Mexico Depart-
ment of Game and Fish is evaluating a hybrid double
observer-sightability approach for desert bighorn sheep
surveys (Griffin et al. 2013). After telemetered groups are
used to build the detection function, double observer data
refine and calibrate it over time (Griffin et al. 2013).
Currently, surveys for bighorn sheep in GMU 45 and

GMU 46 cost approximately $50,000 and $44,000 per survey
(US$). Given GMU 45 was surveyed 10 times during 1994–
2012, and GMU 46 surveyed 7 times, wildlife agencies spent
nearly a million dollars in pursuit of estimating bighorn
sheep abundance and trends in these GMUs alone. If this
survey continues to follow the same basic protocols and
assumptions, then alternatives exist for optimizing it,
especially regarding spatial coverage. Pursuing these alter-
native designs sacrifice little in estimate precision and trend
while reducing costs. The survey results, however, will
remain suspect until the survey technique incorporates an
estimation of the detection process within it (Lancia et al.
2005).
Moving forward, estimating detection, during subsets of

the survey flights, seems an appealing approach. Additional
pilot work would be required, however, to evaluate how
improvements to the detection process affect abundance and
trend resolution.
Prior to survey modification or redesign, we suggest that

the biologists managing these desert bighorn sheep identify
the type of information they need, and specify why they need
it, for informing their management actions and decisions
(e.g., population management, prescribing sustainable hunts;
Lindenmayer and Likens 2009, 2010). This information will
steer construction of credible surveys and studies to address
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their objectives and identify the amount of accuracy
(precision and bias) required. Such an approach will advance
the management of desert bighorn sheep in southwestern
Arizona.

MANAGEMENT IMPLICATIONS

Biologists should identify specific management or conserva-
tion objectives that wildlife surveys can inform, prior to
survey design and implementation. Then, the survey design
and effort required match the amount of bias and precision
needed. Concomitantly, a survey must rely on tenable
assumptions, to ensure a credible methodology.
We commend designers of this abundance survey for

desert bighorn sheep in southwestern Arizona, for
recognizing the importance of detectability and working
to incorporate it. Unfortunately, our assessment of the
current survey identifies survey deficiencies: differences in
abundance of approximately 50% are often not detectable
using standard levels of precision, precision remains
insufficient to detect substantial trends within short periods
(i.e., 4 years), and the assumption of a fixed detection
process is untenable. The detection of bighorn sheep varied
by time and location, demonstrating the inapplicability of
using 1 detection process through time and across locations.
Therefore, the current survey does not produce credible
data. Further, the questions these surveys inform appear
uncertain, abundance data may inappropriately address
those questions, and the required amount of survey accuracy
remains undefined. Identifying and describing these
problems helps justify and explain why survey re-evaluation
and a likely revision are necessary.
Evaluating survey effectiveness and efficiency forms an

important part of adaptive management that agencies strive
for. Our research identified weaknesses in survey methodol-
ogy and suggested improvements that could be implemented
depending on the management needs. These improvements
center on estimating the detection process for each survey
event. The evaluation we provide is instructive for initiation
and design of wildlife surveys elsewhere.
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