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Abstract

Camera traps are increasingly used to study wildlife ecology and inform conserva-

tion, but valid inference depends on appropriate data analysis. This article intro-

duces the most common analytical approaches for camera‐trap data. Camera traps

are generally used as point‐based sampling devices, and many analytical methods

require spatial independence of camera‐trap stations and temporal independence of

subsequent records. Photographic rates of species should be interpreted with care,

because they confound abundance/use with detectability. Occupancy models esti-

mate species occurrence while accounting for imperfect detection and can reveal

species–habitat associations. Capture–recapture models estimate abundance and

detection probability from individual detection/nondetection data and are applicable

to camera‐trap data for individually recognizable species. Spatial capture–recapture
extends this framework by accounting for animal movement and location relative to

the trap array. This is particularly useful for the often wide‐ranging species typically

studied with camera traps and presents possibilities of modelling spatial population

processes. Several methods have been developed to estimate abundance for species

that cannot be individually identified; they all heavily rely on model assumptions.

Finally, time stamps on camera‐trap records can be used to describe activity

patterns and temporal interactions between species. Considering the usefulness of

camera trapping, we expect ongoing development of analytical approaches for cam-

era‐trap data.

Résumé

Les pièges photographiques sont de plus en plus utilisés pour étudier l’écologie de

la faune sauvage et renseigner la conservation, mais la validité des conclusions

dépend d’une analyse appropriée. Cet article présente les approches analytiques les

plus fréquentes pour les données de pièges photographiques. Ceux‐ci sont en gén-

éral utilisés comme des appareils d’échantillonnage basés en un point, et de nom-

breuses méthodes d’analyse exigent une indépendance spatiale de l’emplacement

des pièges photographiques et une indépendance temporelle des rapports qui suiv-

ent. Les taux photographiques des espèces doivent être interprétés avec prudence

parce qu’ils confondent abondance/présence avec détectabilité. Les modèles d’occu-
pation estiment l’occurrence d’une espèce tout en tenant compte d’une détection

imparfaite et ils peuvent révéler des associations espèce‐habitat. Les modèles par

capture‐recapture estiment l’abondance et la probabilité de détection d’une espèce

pour des données individuelles de détection/nondétection et ils sont applicables aux

données des pièges photographiques pour des espèces reconnaissables
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individuellement. La capture‐recapture spatiale élargit ce cadre en prenant en

compte le déplacement d’un animal et sa situation par rapport à l’ensemble des

pièges. Ceci est particulièrement utile pour les espèces qui font souvent de grands

déplacements et qui sont habituellement étudiées au moyen de pièges pho-

tographiques et cela offre des possibilités de processus de modélisation spatiale de

populations. Plusieurs méthodes ont été développées pour estimer l’abondance
d’espèces qui ne peuvent pas être identifiées individuellement ; elles dépendent

toutes beaucoup des hypothèses du modèle. Enfin, l’horodatage sur les enreg-

istrements des pièges photographiques peut servir pour décrire le schéma des acti-

vités et les interactions temporelles entre espèces. Vu l’utilité des pièges

photographiques, nous nous attendons à un développement constant des approches

analytiques pour les données qu’ils fournissent.
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1 | INTRODUCTION

Camera traps have revolutionized our ability to survey elusive and

rare mammals and hold great promise to advance ecological

understanding and inform conservation of these species. But as

for any survey method, the validity of the inference we draw

from camera‐trap data depends on proper study design and use

of appropriate analytical techniques. This paper is intended to

introduce the most common analytical approaches for camera‐trap
data, including the study of species occurrence, richness, abun-

dance and other demographic parameters, as well as activity pat-

terns. It is not a comprehensive review of any one of these

topics. Rather, I aim to present the objectives, assumptions and

resulting study design considerations of these commonly used ana-

lytical tools, and discuss their limitations. The paper also provides

references to the primary literature for more advanced topics and

details that are beyond its scope.

2 | GENERAL CONSIDERATIONS

Most analytical approaches for camera‐trapping data share terminol-

ogy and concepts. In many applications, a single camera trap is con-

sidered a sampling unit in space and is often referred to as a

camera‐trap station. Here, a camera trap is a point‐based detector—
a detector that refers to a point in space, rather than an area. This

has implications for the interpretation of parameters (see Occupancy

and N‐mixture models, below). Some approaches, such as capture–
recapture for individually recognizable species, customarily use two

cameras facing each other at each station, to capture both flanks of

a passing individual (Karanth & Nichols, 1998). In those cases, the

station, rather than the camera, becomes the sampling unit. Some

applications define area‐based sampling units (grid cells, habitat frag-

ments) and deploy multiple camera traps within that sampling unit

(e.g., Michalski & Peres, 2007), but I will focus on the more common

use of camera traps as point‐based sampling devices.

Many analytical approaches such as occupancy models require

that sampling units are spatially independent of each other, meaning

that the observation in one location does not influence what we

observe in a nearby location. A simple example of lack of spatial

independence is an individual being detected at multiple stations.

Therefore, a rule of thumb to approximate spatial independence is

to space stations at least approximately one home range diameter of

the target species apart from each other. Lack of spatial indepen-

dence can lead to biased estimates of covariate associations (e.g.,

Lichstein, Simons, Shriner, & Franzreb, 2002). There are analytical

approaches that can account for a lack of spatial independence (e.g.,

conditional autoregressive models, Besag, York, & Mollié, 1991), but

these are beyond the scope of this article. Conversely, spatial cap-

ture–recapture requires the same individual to be detected at multi-

ple stations (Royle, Chandler, Sollmann, & Gardner, 2014), and

conventional capture–recapture works better when an individual is

exposed to multiple traps (Otis, Burnham, & White, 1978). Whether

we need spatially independent detectors depends on the analytical

approach, and what constitutes spatial independence depends on

the focal species. These are important considerations, especially

when designing multi‐species or multi‐purpose studies.

Similarly, many analytical approaches assume that subsequent

detections at the same station are temporally independent. To that

end, multiple nonindependent pictures (i.e., pictures taken within a

short time interval) are condensed into a single independent detec-

tion. Without a detailed understanding of activity and movement

patterns of the target species, it is difficult to determine an ecologi-

cally justified threshold for temporal independence. Some situations

are simple. Many camera‐trap models take a series of pictures when

triggered—these obviously refer to the same event of an animal
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passing the camera trap and are thus not independent, constituting a

single detection. Similarly, if an individual lingers in front of a camera

trap, multiple pictures are not independent, as they represent a sin-

gle visit by that individual to the station. Problems arise in intermedi-

ate situations, when some time passes between subsequent pictures,

and we cannot determine whether these pictures represent distinct

individuals. Researchers have used different thresholds, typically

30 min (e.g., O'Brien, Kinnaird, & Wibisono, 2003) to an hour

(Bahaa‐el‐din et al., 2016); some researchers have argued that multi-

ple pictures within the same day may not represent independent

detections (Royle, Nichols, Karanth, & Gopalaswamy, 2009). In most

cases, this threshold is determined subjectively, based on the best

available knowledge of the species under study. But it can also be

determined based on the temporal autocorrelation (Kays & Parsons,

2014) or analysis of time intervals (Yasuda, 2004) of subsequent pic-

tures.

3 | PHOTOGRAPHIC RATES

An intuitive output from a camera‐trap survey is the number of (in-

dependent) records of a given species at a sampling location (possi-

bly during a particular time interval, e.g., an ecological season).

Dividing the number of records by the sampling effort at that loca-

tion provides a photographic rate. This quantity is sometimes inter-

preted as a relative abundance index (RAI, O'Brien et al., 2003).

Unfortunately, photographic rates are influenced not only by a spe-

cies’ abundance, but also by its movement patterns, and by camera‐
trap set‐up or habitat, to name just a few factors (Sollmann,

Mohamed, Samejima, & Wilting, 2013). Without additional informa-

tion, we cannot disentangle the effects of these confounding factors

from the effects of abundance. Thus, when we compare RAIs across

study areas or species, we do not know whether differences are in

fact due to differences in abundance or due to differences in any of

these other factors. Because of this fundamental flaw, RAIs are not

discussed any further here (for a detailed discussion of abundances

indices in general, see, e.g., Williams, Nichols, & Conroy, 2002, Chap-

ter 12).

Rather than an index of abundance, photographic rates should

be interpreted as an index of activity, where activity of a species at

a site can increase because more individuals use that site and/or

because individuals use that site more often. In this context, photo-

graphic rates can be analysed using generalized linear (mixed) models

(see, e.g., Gelman & Hill, 2006, for a thorough introduction to this

broad class of models). Fundamentally, GL(M)Ms estimate relation-

ships between predictor and response variables. In the present con-

text, the response variable is the photographic rate, and we can use

GL(M)Ms to investigate whether covariates measured at each cam-

era trap (or over time) explain variation in photographic rates (e.g.,

Foster, Harmsen, & Doncaster, 2010). Covariate associations must

be interpreted with care because they can represent both ecological

and sampling processes. For example, we could observe higher pho-

tographic rates in forested areas compared to grassland because the

species under study uses forested areas more frequently (i.e., the

association with forested habitat represents an ecological process),

but we could also observe higher rates in forested areas because in

dense vegetation, it is easier to target game paths and other features

along which animals are likely to move, thus increasing our chances

of recording them (i.e., the association with forested habitat repre-

sents a sampling process).

4 | OCCUPANCY

Camera traps are a prime tool to study the occurrence of elusive

species. Verifying a species’ presence is (conceptually) simple—if we

record it, we know it is there. On the other hand, failure to detect a

species does not prove its absence, because we cannot rule out the

possibility that it is indeed present, but we failed to observe it—
maybe because it occurs at very low densities or because of insuffi-

cient sampling effort. Occupancy models are concerned with describ-

ing patterns of species occurrence and can thus be considered a

form of species distribution model. But rather than considering only

sites where the species was detected as “occupied” (also referred to

as “naïve occupancy”), these models account for the fact that a spe-

cies may be present but missed by our sampling efforts (MacKenzie

et al., 2002, 2006 ). In other words, occupancy models account for

imperfect species detection. To do so, these models require sampling

multiple sites multiple times. Repeated visits to a site are called “oc-
casions,” and for each site on each occasion, we obtain an observa-

tion of 1 if the species was observed or 0 if it was not observed.

Data from occupancy surveys thus comprise a site‐by‐occasion
matrix with binary detection/nondetection data. The ability to esti-

mate species detection probability comes from the repeated visits: If

the species is observed at a given site on at least one occasion, we

know it is present (i.e., the site is occupied), and we can conclude

that not observing the species at that site on another occasion is

due to nondetection, not species absence. In addition to detection

probability, occupancy models estimate occupancy probability ψ, the

probability that the focal species occurs at a site. Occupancy proba-

bility can be modelled as a function of site‐specific covariates (e.g.,

habitat, human disturbance) to make inference about conditions that

favour a species’ occurrence. Similarly, detection probability can be

modelled as a function of site (e.g., camera location on or off road)

and occasion‐specific covariates (e.g., weather, temperature) thought

to impact how likely a species is detected when present. Occupancy

models require that the true occupancy status of a site—whether a

site is occupied or not—does not change over the course of our

study. Violation of this “closure” assumption can lead to positive bias

in occupancy estimates. What survey duration is appropriate to

approximate closure depends on the species and system under

study; for example, where species occurrence tracks the availability

of seasonal resources, an occupancy survey should be constrained to

a single season. Other than closure, occupancy models assume inde-

pendence of observations, both across sites and occasions.

Because camera trapping is a continuous form of sampling, apply-

ing occupancy modelling to camera‐trapping data requires subdividing

the survey into discrete intervals representing the occasions.
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Assigning occasions is somewhat arbitrary but should be guided by a

few general principles: (a) Avoid having too many occasions with 0

observations (usually very short occasions). Many 0s in the detection

matrix will lead to very low estimates of detection probability, which

can lead to numerical issues when fitting models. (b) At the same time,

avoid losing a lot of information. When condensing data into too few,

long occasions, many photographic records of a species at a site will

be subsumed into a single entry of “1,” reducing the amount of infor-

mation that goes into estimating detection probability. (c) Keep occa-

sion length constant. The probability of detecting a species increases

with increasing occasion length. If occasion lengths (or effort within

an occasion) differ, you may need to account for that in your model,

by including occasion length (or effort) as a covariate on detection. (d)

Finally, if you study a territorial, low‐density and wide‐ranging species,

consider that the presence of a single individual may determine

whether your camera‐trap station is occupied or not. As this individual

moves about its home range, it may temporarily not be in the vicinity

of the camera trap, thus becoming unavailable to be detected. This

phenomenon is called temporary emigration (Nichols et al., 2008) and

can lead to underestimating detection probability and, consequently,

to overestimating occupancy probability. Choosing occasions that are

long enough for the individual to have a good chance to be available

for detection at some point during the occasion can alleviate some of

the problems introduced by animal movement. Appropriate occasion

length depends on your data set and focal species. How many sites

should be sampled over how many occasions depends on a variety of

factors including the species’ detection probability and whether the

species is rare or common. MacKenzie and Royle (2005) provide gen-

eral guidelines for allocating effort between sampling more sites or

over more occasions.

The difficulties introduced by animal movement hint at a general

challenge when applying occupancy models to camera‐trap data:

Occupancy models were developed for application with discrete habi-

tat patches (e.g., ponds, forest fragments), and in that context, occu-

pancy probability has a clear interpretation as the probability that a

patch is occupied by the species of interest. Camera trapping, on the

other hand, represents point‐based sampling in continuous habitats;

occurrence of a wide‐ranging species at a one‐dimensional point in

space is not as easy to interpret. Because animal movement can tem-

porarily lead to absence of the species at a station, estimates of occu-

pancy probability from point‐based sampling methods are usually

interpreted as probability of use, that is, the probability that a site is

used at least once during the survey (MacKenzie & Royle, 2005).

Alternatively, studies have ascribed areas to camera‐trap stations,

often based on known average home range; for example, if a species

has an average home range of 5 km2, one could assume that occur-

rence of a species at a camera trap implies occurrence in a 5‐km2 area

around the camera trap. This approach implies the strong assumption

that a single point in space provides conclusive information about an

area on the scale of multiple square kilometres. The true area sampled

by a camera trap is difficult to determine. Because of that, Efford and

Dawson (2012) argue that occupancy estimates from point‐based sur-

veys in continuous habitat are confounded with density and home

range size and may therefore not be readily comparable across sur-

veys or species. On the other hand, based on simulations and empirical

data, Steenweg, Hebblewhite, Whittington, Lukacs, and McKelvey

(2018) suggested that camera‐trap‐based estimates of occupancy can

be comparable among species with very different spatial ecology. Both

papers provide a thorough overview of the importance of spatial and

temporal sampling scale in camera‐trap‐based occupancy modelling.

Monitoring occupancy has been proposed as an alternative to

monitoring abundance (MacKenzie & Nichols, 2004), mostly because

occupancy data are easier to obtain across large spatial scales than

data necessary for abundance estimation (see Capture–recapture
below, and Karanth et al., 2011, for an example). Though an ecologi-

cally meaningful quantity in its own right, occupancy should not be

misinterpreted as an index of abundance (Efford & Dawson, 2012;

MacKenzie & Royle, 2005) as its relationship with abundance

depends on multiple factors, including survey duration and animal

density (Steenweg et al., 2018), as well as home range size and sam-

pling design.

Basic single‐season, single‐species occupancy models have been

extended in many ways. A few extensions commonly applied to cam-

era‐trap data include the following: Two‐species occupancy models, also

referred to as co‐occurrence models, allow investigation of patterns of

co‐occurrence and avoidance (MacKenzie, Bailey, & Nichols, 2004).

They have been applied to camera‐trap data to investigate spatial seg-

regation/overlap between competitor species (e.g., Ramesh, Kalle, &

Downs, 2017) as well as predators and their prey (e.g., Farris, Kar-

panty, Ratelolahy, & Kelly, 2014). Recently, these interaction models

have been extended to more than two species (Rota et al., 2016).

Community occupancy models (see also Species richness below) jointly

model data of multiple species, which allows sharing information

across species and thus improves parameter estimates for data‐poor
species (Dorazio & Royle, 2005). Combined with camera trapping, this

approach has been used to investigate spatial patterns in species rich-

ness in space (e.g., Burton, Sam, Balangtaa, & Brashares, 2012). The

Royle–Nichols model (Royle & Nichols, 2003) allows estimation of local

abundance (i.e., at a camera trap) from species detection/nondetection

data and is discussed further under Abundance estimation without

individual identity. Multi‐season or dynamic occupancy models allow

estimation of dynamic parameters such as patch extinction and colo-

nization (MacKenzie, Nichols, Hines, Knutson, & Franklin, 2003). They

can be used to analyse data from camera‐trap surveys that are

repeated over multiple years or seasons, given that the same sampling

locations are maintained over time. Dynamic occupancy models have

been used, for example, to investigate changes in occupancy of native

and exotic carnivores in Madagascar (e.g., Farris et al., 2017), or sea-

sonal variation in occurrence of forest mammals in Tanzania (Martin,

Ndibalema, & Rovero, 2017).

5 | SPECIES RICHNESS

Camera traps simultaneously collect data on a suite of species and

are thus a prime tool to estimate species richness. Just as we can fail

to detect a single species at a site at which it is present, when
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surveying for species richness, we may fail to detect a species in our

survey even though it is part of the sampled community. A variety

of analytical methods exist to overcome this problem of imperfect

species detection in the context of richness estimation. Species

accumulation curves (e.g., Gotelli & Colwell, 2001) plot the cumula-

tive number of species detected against survey effort; their asymp-

tote corresponds to species richness, which can be estimated if the

data suggest it has not been reached. Alternatively, capture–recap-
ture‐type estimators (Chao, 2004), which use detection/nondetection

data for all species across survey occasions, can be used to estimate

species richness in the study area (e.g., Tobler, Carrillo‐Percastegui,
Leite Pitman, Mares, & Powell, 2008).

Camera‐trap data consist of species, station and occasion‐specific
detections, but both accumulation curves and capture–recapture‐
type estimators ignore the spatial component of the data, thereby

losing interesting information on how richness may vary within a

study area. Community occupancy models (e.g., Dorazio & Royle,

2005), mentioned in the previous section, make use of this informa-

tion and allow estimating the number of species present at any given

camera‐trap station, as well as the total number of species in the

study area. The data structure for these models allows for detailed

modelling of variation in detection probability (with time, in space,

by species), which is important for obtaining unbiased richness esti-

mates.

6 | ABUNDANCE, DENSITY AND
DEMOGRAPHIC PARAMETERS

Like species occurrence, determining population size suffers from

our imperfect ability to count all animals in a population of interest.

Capture–recapture (CR) models have a long tradition in mammalian

population ecology (Lincoln, 1930) as the gold standard to estimate

demographic parameters such as population size and density, sur-

vival or recruitment, while accounting for imperfect individual detec-

tion. For species with individual coat patterns, camera traps have

revolutionized our ability to collect individual‐level detection data

noninvasively (e.g., leopards, Chapman & Balme, 2010).

Capture–recapture models can be divided into closed population

models, which assume no loss or gain in individuals over the course

of the study and focus on estimating abundance and density (Otis

et al., 1978), and open population models, which focus on estimating

dynamic parameters such as survival and recruitment (Pollock,

Nichols, Brownie, & Hines, 1990). Closed population CR models have

frequently been applied to camera‐trap data of naturally marked spe-

cies. In these applications, an array of paired camera‐trap stations is

placed in a manner that increases chances of detecting the target

species (e.g., for carnivores, that often means placing cameras along

roads and trails) and that leaves no gaps within the array large

enough to contain an entire home range. Ideally, each home range

contains multiple camera traps, to increase chances of detection. As

a rule of thumb, arrays should cover at least 4 times the average

home range for appropriate density estimation (Maffei & Noss,

2008; see also below). Further, Otis et al. (1978) suggested a

minimum of 25 recorded individuals to obtain reliable abundance

estimates. Cameras are run for a period that is long enough to

obtain sufficient captures and recaptures of individuals, yet short

enough to approximate a closed population (as before, what consti-

tutes “short enough” depends on the ecology of the focal species).

Individuals are identified from photographs, and detection histories

are created by first dividing the study period into sampling occa-

sions, then collapsing detection information across the entire array

and noting whether or not (1 or 0) an individual was detecting dur-

ing an occasion. Analogous to occupancy modelling, occasions should

be defined in a manner that minimizes the loss of recapture informa-

tion and that reduces the number of 0s in the detection history

matrix to increase detection probability and improve the reliability of

abundance estimates (Otis et al., 1978).

Adequately modelling the detection process is important in

obtaining unbiased abundance estimates, and therefore, fitting CR

models often involves exploring different sources of heterogeneity in

detection probability. Traditional models include variation with time

(i.e., across occasions), a behavioural response to trapping that leads

to the first detection having a different probability than subsequent

detections (that seems less likely in camera traps than when dealing

with baited life traps, but several studies have reported such effects

in camera‐trap studies, e.g., Wegge, Pokheral, & Jnawali, 2004), and

individual variation, either due to measured covariates (sex, age; e.g.,

Sollmann et al., 2011) or due to unmeasured factors (latent hetero-

geneity models; e.g., Pledger, 2000). Akaike’s information criterion

(AIC, Burnham & Anderson, 2002) can then be used to select the

model that best describes the data with the fewest parameters.

The above‐described procedure yields an estimate of abundance,

but density is frequently a more useful measure to compare popula-

tions across study areas, time or species. Species studied with cam-

era traps tend to be highly mobile and are thus bound to use areas

beyond the immediate camera‐trap array. The difficulty in determin-

ing this effective sampled area to estimate density has long been

recognized (Bondrup‐Nielsen, 1983; Parmenter et al., 2003; Wilson

& Anderson, 1985). Measures of movement across the camera array

(mean maximum distance moved between detections, for example)

have been used to buffer the camera‐trap array and determine the

effective sampled area, but because there is no consensus on which

measure to use, and because width of the chosen buffer directly

impacts density estimates, these become arbitrary and not compara-

ble across studies (e.g., Dillon & Kelly, 2007). How much individual

home ranges overlap with the camera‐trap array also influences how

likely individuals are to be detected—a source of heterogeneity in

detection probability that cannot be addressed explicitly in tradi-

tional capture–recapture.
The framework of spatial capture–recapture (SCR, Efford, 2004;

Royle et al., 2014) emerged in response to these challenges. SCR does

not collapse detections across the entire camera array but makes use

of the information where an individual was detected, to describe how

the spatial juxtaposition of individual home ranges with sampling

effort affects detection probability. The model assumes that detection

probability decreases with increasing distance from an individual’s
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activity centre (conceptually, the midpoint of an individual’s home

range); where we observe an animal on the sampling array provides

some (albeit imperfect) information on where that activity centre is

located. Further, the model assumes that activity centres are dis-

tributed according to a spatial point process; the spatial domain for

that process—the area in which activity centres can be located, called

the state space—is set so that it includes the activity centres of all

individuals that could have been exposed to sampling. Once large

enough, increasing the size of the state space does not influence den-

sity estimates (contrary to the buffer approach in traditional CR). Den-

sity in SCR is clearly defined as the number of activity centres in the

state space divided by its area.

The input for an SCR model consists of the spatial encounter his-

tories, showing how many times each individual was detected at

each station, and the coordinates of all stations. In addition to den-

sity, the model estimates the parameters of the detection function,

which describes the decrease in detection with distance to the ani-

mal’s activity centre. A common choice is the half‐normal function,

which is defined by the baseline trap encounter rate—the encounter

rate at a (hypothetical) camera trap located at an individual’s activity

centre—and a scale parameter that determines how quickly the

encounter rate declines with distance to the activity centre. The

scale parameter is related to how far animals typically move (if they

move over larger distances, their encounter rates will decline more

slowly) and is therefore also sometimes referred to as the movement

parameter.

Spatial capture–recapture allows for more flexible study design

compared to traditional CR, for two main reasons: First, because

SCR explicitly models animal movement, the camera array does

not have to cover at least 4 times an average home range; as

long as sample size (number of individuals, recaptures) is sufficient,

covering an area of approximately one home range is appropriate

(Sollmann, Gardner, & Belant, 2012; Tobler & Powell, 2013). That

is particularly advantageous when studying wide‐ranging mammals.

Second, SCR does not have the “no gaps” requirement of tradi-

tional CR, so that large areas can be sampled using clusters of

camera traps (Efford & Fewster, 2013; Sun, Fuller, & Royle, 2014).

SCR requires observations of (at least some) individuals at multiple

camera traps to estimate the scale or movement parameter, and

camera traps should be spaced accordingly. Finally, because the

detection process in SCR can be parameterized in terms of

encounter rates (rather than probabilities), there is no need to

divide the study period into discrete occasions (unless the goal is

to model variation in encounter rates over time), or to reduce

observations to a 0/1 format. Instead, SCR works directly with the

number of independent records of an individual at a trap. Much

like traditional CR, SCR models assume that individuals are

detected independently of each other. That assumption is violated

for group‐living species, where individuals travel together and thus

are detected together, and for young individuals who are not

observed independent of their parents. It is unclear to what

extent violation of this assumption affects density estimates (e.g.,

Russell et al., 2012).

Similar to regular CR, SCR can accommodate sources of hetero-

geneity in baseline encounter rate among individuals or across time.

But because we consider the detection process at the level of the

camera‐trap station, we can now also model variation in baseline

detection across space (e.g., Sollmann et al., 2011 showed that base-

line detection of jaguars was a lot higher at cameras set along roads,

as compared to off‐road cameras). Considering the benefits SCR

offers over traditional CR, it seems the preferable framework for

population estimation in camera‐trap studies, which predominantly

focus on wide‐ranging species.

The basic SCR framework can readily be extended to incorporate

spatial processes of interest to ecologists: Density can vary across

the state space and we can model that variation using environmental

covariates (Borchers & Efford, 2008); resource selection functions

can be incorporated into SCR models to account for the fact that

animals use different habitats with different intensity, leading to a

more realistic representation of animal space use (Royle, Chandler,

Sun, & Fuller, 2013); instead of using Euclidean distance between

activity centres and detectors, models can make use of resistance

surfaces to adequately reflect individual movement across the land-

scape (Sutherland, Fuller, & Royle, 2015). SCR models can also be

extended to open populations (e.g., Gardner, Reppucci, Lucherini, &

Royle, 2010; see also next paragraph) and resighting surveys of arti-

ficially marked individuals (i.e., mark–resight, Sollmann, Gardner,

et al., 2013), but these advancements are not yet fully generalized.

Camera‐trap‐based open population capture–recapture applica-

tions remain relatively rare. The variety of modelling approaches and

sampling designs for open population models is broad, but the

design most applicable to camera trapping is Pollock’s robust design

(RD, Pollock, 1982). The RD design consists of data collection on

two temporal scales. Primary occasions are those across which the

population is allowed to change (a year or a season). Dynamic pro-

cesses such as survival and recruitment happen between primary

occasions. Within each primary occasion, a closed population survey

is conducted to estimate population size and detection probability.

Intervals between subsequent closed population surveys should be

long compared to the duration of a closed population survey. This

combination of open and closed population sampling and modelling

allows for estimation of population size through time, as well as

demographic parameters including survival, recruitment and tempo-

rary emigration (Pollock et al., 1990), and was spearheaded in cam-

era‐trap studies by Karanth, Nichols, Kumar, and Hines, (2006),

studying tiger population dynamics.

7 | ABUNDANCE ESTIMATION WITHOUT
INDIVIDUAL IDENTITY

The above‐described (S)CR approaches require individual identifica-

tion of animals, which for camera trapping is limited to those species

with individual coat patterns (or requires artificial marking of ani-

mals). Several methods have been developed that allow estimating

population size without individual identification; however, all these

methods rely heavily on assumptions made about the data—
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assumptions that, in the absence of individual identification, cannot

readily be tested. As such, these methods have to be treated with

great care. Due to limited space and difficulty of the subject, I will

not discuss these methods in detail, but provide a brief overview.

The Royle–Nichols (RN) model (Royle & Nichols, 2003) is an

extension to regular occupancy models, built on the notion that the

more individuals of a given species occur at a sampling location, the

more likely we are to detect the species (or in other words, the more

likely we are to detect at least one individual). Detection probability,

therefore, carries information about local abundance. The RN model

uses this relationship to estimate local abundance (i.e., abundance at

a camera‐trap location) using regular occupancy‐type species detec-

tion/nondetection data. Potential issues with this approach include

that the true relationship between local abundance and species

detection probability is likely more complex (e.g., due to individual

variation in detectability) and, specifically for camera trapping, that it

is unclear to which area the resulting local abundance estimates

refers, hampering ecological interpretation.

Whereas the RN model relies on spatially independent survey

locations, Chandler and Royle (2013) developed a model that makes

use of spatial correlation in counts across closely spaced detectors

to estimate animal density—essentially an SCR model without indi-

vidual identification. This model is very sensitive to study design.

Based on personal (and unpublished) experience, comparing the

Chandler and Royle model results to those of a SCR model, the for-

mer often fails to provide reasonable density estimates, but see

Jiménez et al. (2017) for a successful application to camera‐trapping
data.

Rowcliffe, Field, Turvey, and Carbone (2008) developed a model

for camera‐trapping data that assumes individual animals behave like

particles in an ideal gas (they move at random) and estimates density

as a function of encounter rates between animals and traps and ani-

mal movement speed. The model assumes random movement of

individuals, requires a random trap set‐up relative to animal move-

ment, and knowledge of, or the ability to estimate, movement speed

and the amount of time individuals are active. It has been applied to

camera‐trap data of several mammal species (Cusack et al., 2015;

Manzo, Bartolommei, Rowcliffe, & Cozzolino, 2012).

Finally, Howe, Buckland, Després‐Einspenner, Kühl, and Matthio-

poulos (2017) combined distance sampling with camera trapping to

estimate animal density, treating each camera trap as a point tran-

sect and using distances of detected individuals from the camera

trap to estimate detection probability. The method requires account-

ing for animals not being available for detection by camera traps dur-

ing periods of inactivity, and doing so requires careful thought and

possibly additional data on animal activity patterns.

8 | ACTIVITY PATTERNS

Among other metadata, camera‐trap pictures contain timestamps

that can be used to describe activity patterns. Traditionally, activity

patterns have been constructed by grouping pictures into discrete

time intervals (often, 1‐hr intervals) and displaying the frequency of

observations in each interval (e.g., Jácomo, Silveira, & Diniz‐Filho,
2004). This approach will often provide a valid picture of a species’
activity throughout the day, but it relies on artificial grouping of con-

tinuous data, and it ignores that time of day is circular. Addressing

these shortcomings, Ridout and Linkie (2009) developed an approach

that fits a smooth, circular curve (specifically, a Kernel density func-

tion) to the observed time stamps, where peaks in the curve corre-

spond to peaks in animal activity. The approach is frequently used to

compare activity patterns, between species, or otherwise defined

groups of individuals (e.g., herbivores at sites with and without large

predators, Tambling et al., 2015). Here, the degree to which both

curves overlap serves as an index for the similarity of the two activ-

ity patterns. Ridout and Linkie (2009) present several estimators of

overlap, of which one (termed Δ1) performs well with as few as 25

records of each species.

The degree of overlap is sometimes interpreted as an index for

how much two species interact (low overlap = avoidance; high over-

lap = attraction); that interpretation, however, ignores the fact that

species not only have to be active at the same time, but also in the

same location to interact. A more detailed investigation of species

interactions considers the time intervals between pictures taken at a

particular camera trap of members of a species pair, A and B. Harm-

sen, Foster, Silver, Ostro, and Doncaster (2009), for example, studied

top predator avoidance and extracted, for each camera trap, the time

that passed after a record of a jaguar until a puma was recorded

again (interval AB) and the reverse (interval BA) and compared

means of these two types of intervals. If there is avoidance of spe-

cies A by species B, we would expect AB intervals to be longer, on

average, than BA intervals. Karanth et al. (2017) compared measures

of AB to random intervals generated under the assumption of no

avoidance. And Parsons et al. (2016), looking at predator–prey inter-

actions, calculated avoidance ratios as AB/BA or as the time intervals

between records of a prey species with/without the passage of a

predator in between (BAB/BB), where ratios >1 indicate avoidance

of A by B. When interpreting any of these time intervals and ratios,

we must consider that the presence/activity of other species may

well influence the results.

9 | OUTLOOK

Camera traps are used to study a variety of ecological and conserva-

tion‐related topics, and this brief overview of analytical approaches

necessarily remains incomplete. For example, camera traps, particu-

larly those with the ability to record videos, also allow studying

aspects of animal behaviour (e.g., Caravaggi et al., 2017), many of

which necessitate a different set of analytical tools. The flexibility of

standard frameworks such as occupancy and (spatial) capture–recap-
ture models has led to the development of a wide variety of model

modifications for particular sampling situations. Considering the

ever‐increasing technological improvements and the usefulness of

camera trapping as a tool to study otherwise elusive wildlife, we can

expect a parallel development of novel or improved analytical

approaches for camera‐trap data.
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