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Ecology is the scientific
study of the distribution
and abundance of organ-
isms.’1 If we know the

distribution of resources on which
the organisms depend, the distri-
bution and abundance of organ-
isms can often be characterized
by resource selection functions
(RSFs). As such, RSFs are funda-
mental tools for quantifying ecol-
ogy. An RSF is any function that is
proportional to the probability of
use of a resource unit2. The recent
development of RSFs is a byprod-
uct of research on quantitative
models for characterizing natural
selection3, which involve the same
statistical approaches as quantify-
ing resource selection by ani-
mals2. The purpose of this review
is to chronicle new advances in
the use of RSFs for mapping the abundance of organisms
using geographical information systems (GIS) and for 
estimating total population size in an area.

Habitat selection is usually a behavioural consequence
of animals actively selecting where they live, or passively
persisting in certain habitats. Ultimately, however,
resource-use patterns are a consequence of the influence
of selection on survival and reproduction, which deter-
mines fitness in various habitats4. Typically, the extent of
habitat use suggests the quality and abundance of re-
sources in those areas, which in turn reflects fitness in that
habitat5, although there are exceptions6.

Recent developments in the use and analysis of GIS pro-
vide the opportunity to map habitats7,8. We believe that
RSFs are the most promising of procedures proposed for
studying resource selection when combined with GIS
because: (1) RSFs offer a quantitative characterization of
resource use; (2) RSFs can accommodate virtually any 
type of resource being selected, including both categorical 

and scalar variables2; and (3) RSF
models easily accommodate spa-
tial structure9,10 and can be inter-
faced with GIS to facilitate rapid
analysis and use of remote sens-
ing and other types of spatial
data8,11.

Because RSFs yield probabil-
ities that are proportional to use,
RSFs can also be used, with
appropriate scaling, to tie popu-
lations to their habitats. If such a
habitat or population link can be
established, there are important
applications for conservation and
ecological management. For ex-
ample, in the USA, the RSF
approach has been used to model
populations of spotted owls (Strix
occidentalis caurina) in the Pacific
northwest12, to anticipate future
timber wolf (Canis lupus) popu-

lations in the northern Great Lakes states13 and New 
England14, and to base a population viability analysis of
California gnatcatchers (Polioptila c. californica)15. This
approach is also currently being used to anticipate the dis-
tribution and abundance of grizzly bears (Ursus arctos hor-
ribilis) in the proposed recovery zone in the Selway-Bitter-
root wilderness of Idaho and Montana (M.S. Boyce et al.,
unpublished).

Here, we outline two approaches for linking RSFs to
population size, N. Using a reference area of known N, RSFs
can be used to extrapolate N in a new area based on the
area of resource units. RSFs are typically estimated using
availability data versus use data. Alternatively, a resource
selection probability function (RSPF) can be estimated
over a finite collection of sample units, which can then 
simply be summed over an area to estimate population
size. RSPFs can be obtained from samples of used versus
unused resource units or by adjusting an RSF based on
sampling intensity.
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Using resource selection functions
The advantage of RSFs is that they are proportional to

the probability of use of a resource unit2 (Box 1). There-
fore, if we know the distribution of a population among
habitats by RSF values in a baseline area, we can then esti-
mate the density of animals by habitat type (assuming that
all units are equally available). If similar patterns of use can
be assumed to occur in another area, we can predict the
population size by estimating densities according to 
habitats and summing across habitat type (Box 2).

An example using this method for extrapolating the
number of wolves in the northeastern United States is
given in Box 3. In this case, suitable habitats are arbitrarily
defined as those with a relative RSF.0.5, but there is no
reason to expect that poorer quality habitats would not be
occupied as well. Consequently, the calculations yield
underestimates of expected population size (also see Refs
15, 22). An extensive statistical treatment of RSFs and their
estimation under various sampling protocols is provided
by Manly et al.2 and related sampling considerations are
discussed by Aebischer et al.23

Using resource selection probability functions
Whereas an RSF, w, is proportional to the probability of

use for a resource unit, a resource selection probability
function (RSPF) is scaled so that we can calculate w*,
which is the actual probability of use. Obtaining probabil-
ities of use is useful because we can simply sum the prob-
abilities of use over an area to estimate total population
size. A study design suitable for estimating RSPFs is based
on characterizing used and/or unused sample units (Box
4). However, a common problem with this sampling
scheme is that, often, we cannot discern what constitutes an
unused habitat unit24,25. If we wait longer or collect data
more intensively, we might discover that a habitat unit is
used, making the distinction between used and unused
less clear. A solution to this problem is to estimate an RSF
using a generalized linear model assuming Poisson counts
for the number of used units2. A short-cut (Box 1) is to fit 
a logistic regression of used versus available sites, and 
then to adjust the RSF for different sampling intensities of
randomly selected units (available) and used units2.

Thus, for a finite number of possible habitat units, we
first measure resources for a sample of used and available
sites. Next, we use logistic regression to estimate an RSF to
characterize the patterns of habitat use. The RSF equation
is then modified to create an RSPF by altering the constant,
b0, to adjust for differential sampling of random habitat
units and used sites2. The RSPF model can then be applied
to a GIS map, predicting population size by summing the
RSPF probabilities over an area of interest.

With this method, RSPFs are computed from samples of
resource units that are finite in number. If the sampling
unit is a point, such as a radiotelemetry location, scaling
logistic regression for RSPF is not possible because there
are an infinite number of possible sampling units. Estimat-
ing population size using RSPFs is most easily adapted to
territorial species, where individuals (or families) occupy
exclusive areas (Box 5). When territories overlap, however,
an RSPF could still be used to estimate population size by
adjusting for the extent of territory overlap.

Assumptions of RSF-based population estimation
We assume that the modeler knows the limiting factors

that influence the distribution and abundance of the study
organism and that data are available on key resource vari-
ables. When resource units are sampled, we also assume that

these are sampled randomly and independently. We further
assume that organisms have free and ready access to avail-
able resource units. Although we assume that RSFs and re-
sources do not change during the study, this assumption
can be relaxed if sufficient data are available to estimate RSFs
repeatedly. In some applications, habitats are dynamic and
change rapidly, but RSFs can be estimated to document
how resource selection changes through time. For example,
Arthur et al.11 studied variation in pack ice habitat for polar
bears (Ursus maritimus) and measured habitat selection
every three to six days. Similarly, seasonal changes in habitat
use might require seasonal estimates of RSFs (Ref. 27).

In addition to the issue of temporal constancy in
resource selection, there is also the problem of variation in
the availability of resources and the effect of spatial vari-
ation on selection of a given unit. If not reconciled, an RSF
or RSPF estimated in one area cannot be applied in another
area except under some unusual circumstance in which

Box 2. Estimating population size using resource 
selection functions (RSFs)

For the ith habitat type with area A(xi) and habitat vector xi the relative use is:

where the summation is over the number of habitat types, j 5 1, 2, … , m. If every
habitat unit has a unique value of the variables xi then the sum is over the 
number of units in the study area. So, the number of animals expected in the ith
habitat type is:

Ni 5 N .U(xi)

and density of animals, D(xi), in the ith habitat type is obtained by multiplying the
total population size, N, by the relative use adjusted by area:

D(xi) 5 N .U(xi)/A(xi)

When applied to a new area, to estimate the population size, simply sum over 
the product of density times area of the jth type of habitat in the new area, A9(xj)
for j 5 1, 2,…, m:

Standard errors for 
^

N 9 and D(xj) can be approximated by the delta method using
the first few terms of a Taylor series expansion17.

Box 1. Estimating resource selection functions (RSFs)
A variety of statistical approaches can be used to estimate an RSF, wi, most simply
as the proportion of used resource units of category i from those available. If a1

is the population of available resource units and ai are those in category i, we can
estimate a simple selection ratio:

wi 5 oi/ pi

where pi 5 ai/a1, and similarly, oi is the proportion of used resource units in cat-
egory i. This ‘foraging ratio’ was first applied by R.E. Savage in 1931 to herring
feeding on plankton off the coast of England16.

We can carry this idea a step further by modeling the use of habitats relative to
their availability. For example, we might assume that our resource selection func-
tion, w(x), can be characterized by a log-linear model:

w(x) 5 exp(b0 1 b1x1 1 b2x2 1 … 1 bkxk)

where the xi denote i 5 1, …, k independent habitat variables, and the bis are
selection coefficients. This model can be fitted using a generalized linear model
assuming Poisson counts for the number of used units2, but a short-cut is to fit a
logistic model, t(x), to the independent variables where the dependent data are
one for used units and zero for available units:

t(x) 5 exp(b0 1 b1x1 1 b2x2 1 … 1 bkxk)/[1 1 exp(b 0 1 b1x1 1 b2x2 1 … 1 bkxk)]

The selection coefficients, bi, in the log-linear model are estimated by the logistic
regression coefficients. We simply use the numerator, w(x), to distribute the use
of resources across the landscape2.

   
U( x i ) = w( x i ) A( x i ) w( x j ) A( x j )

j
∑

   
N̂'= D(x j )A'(x j )

j
∑
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the availability, including effects of spatial variation, is the
same. Indeed, simply varying the size of the study area or
excluding certain areas from the domain of the study can
result in different models23. This is not a fatal flaw, how-
ever, because sometimes we obtain robust models that are
relatively insensitive to variation in availability, and in
other cases we can model the relation between selection
coefficients and availability explicitly, thereby taking avail-
ability into account.

When certain habitat attributes are key to the ecology
of a species, the coefficients can be robust over a range of
habitat types. This was the case for models of spotted owl,
because old growth was such an overwhelmingly impor-
tant variable in the estimation of RSFs – the amount of old-
growth forest was a good predictor even in quite different
landscapes26. Specifically, the RSF estimated for habitats in
southwestern Oregon accurately predicted the locations
of spotted owl on the Olympic Peninsula and on the east
slope of the Cascades of Washington – both of these areas

host very different vegetation. However, because the
amount of old-growth forest was such an overwhelmingly
important ecological variable, it was a strong predictor in
each area and the models could be used interchangeably
among areas with little loss of accuracy in predicting owl
nest sites (Box 5).

In some circumstances, resource availability in a land-
scape varies considerably, as does the diet of animals in
different habitats. Consider, for example, grizzly bears in
the Yellowstone (USA) ecosystem. Some bears have sea-
sonal access to cutthroat trout (Oncorhynchus clarki),
whereas other bears might have no trout streams within
their home range28. Likewise, some bears feed extensively
on army cutworm moths (Euxoa auxiliaris) in alpine talus,
but, again, some bears have no access to this food
resource29. Availability of certain resources influences diet
and habitat-use patterns. One solution to this problem is 
to sample home ranges over a range of habitats, and then
to model the coefficients in the RSF as a function of the

Box 3. Wolves in northeastern USA
Mladenoff et al. projected timber wolf (Canis lupus) populations for the Great Lakes states9 and New England10 using resource selection functions (RSFs) with a
variation on the procedure outlined in Box 2. They monitored wolf packs using radiotelemetry18 to secure a collection of 14 ‘used’ pack areas containing at least
50 telemetry locations. Within the region of potential but unused habitat, they obtained habitat data from a collection of 14 random areas equal in area to the mean
pack size. Each selected area was at least 10 km from the nearest known wolf pack. Therefore, the data were from used and unused sites, appropriate for a direct
application of logistic regression analysis2 (see Box 4). Habitat variables included road density, prey [white-tailed deer (Odocoileus virginianus)] density, land-cover
type, human population density and land ownership. Road density (R) was the best predictor. The results of the logistic regression can be expressed as a logit function.
The RSF is therefore:

logit (p) 5 14.6R 2 6.6

The resulting logistic-regression model was scaled from zero to one (i.e. a relative RSF). Suitable habitat was mapped using GIS based on areas with a relative RSF
value of 0.5 or greater.

Using these suitable habitat areas, Mladenoff et al. employed two methods to extrapolate the eventual wolf population into Wisconsin and Michigan where wolf
populations had recently become established. These methods were based on: (1) mean territory size, and (2) white-tailed deer (Odocoileus virginianus) density for
prey. In the first case, the number of wolves was predicted using Fuller et al.’s19 model:

where
^

N is the number of wolves, A is the area of favorable habitat, W is the mean pack size (4.08), M is the mean pack territory size (179 km2), i is the 
proportion of saturated habitat in interstitial areas between packs (0.37), and d is an estimate of the proportion of nonpack wolves (0.15). Isolated habitat frag-
ments less than 50 km2 were not included. This method, therefore, offers an estimate of the saturated wolf density at equilibrium given pack characteristics such
as those observed in Minnesota.

The second method extrapolates wolf population density, D, in numbers per 1000 km2, based on a prey density estimate, specifically white-tailed deer density
per km2, X:

D 5 3.4 1 3.7X

where deer density was estimated for each deer management unit by state wildlife officials20,21. Again only ‘suitable’ habitat was used for the extrapolation and
habitat fragments less than 50 km2 were deleted. An illustration of anticipated wolf habitats in New England is presented in (a) where prey includes both deer and
moose (Alces alces). Wolf population size (b) was obtained simply by summing over the areas of interest.

By monitoring the expanding wolf population in northern Wisconsin subsequent to publishing their model, Mladenoff et al. validated the model21 although 
finding that wolves will indeed occupy areas with RSF,0.5. Figure modified, with permission, from Ref. 14.

(Online: Fig. I)

  
N̂ = AW M 1 + i( )[ ][ ] 1 −d( )

TREE vol. 14, no. 7 July 1999 270



TREE vol. 14, no. 7 July 1999 271

REVIEWS

availability of resources in each home range. Modeling the
coefficients might be accomplished using linear regression
analysis, for example. Then, when a new area is modeled, the
bi coefficients will be estimated based on the availability in
this new area.

One of the potential applications of RSF models in a GIS
context is to predict future habitat types using succession
models, and then to anticipate future population sizes12.
Understanding how RSF coefficients might change as
resource availability changes in the landscape is funda-
mental to the reliability of such population projections.

Autocorrelation of resource variables is an important con-
sideration, especially for evaluating the statistical sig-
nificance of alternative models. Autocorrelated data tend to
yield estimates of variance that are too small and, conse-
quently, we are likely to overestimate the differences of use
among habitats2. Radiotelemetry data, for example, might be
abundant but not independent. By inspecting an autocorre-
lation function, one can identify the time interval over which
observations become independent and use this interval for
sampling observations.

Likewise, the distribution of organisms is seldom ran-
dom in space – organisms are often clustered in good habi-
tat or, possibly, aggregated as an antipredator strategy.
But, the spatial autocorrelation structure of the distribu-
tion of the organism might be simply a function of the 
spatial pattern of its habitats, so RSF modeling might
remove any such pattern. One approach is to examine the
residuals from an RSF to see if spatial aggregations occur
independently of habitat; for example, by using the Durbin-
Watson statistic. If spatial autocorrelation occurs in the
residuals, one might then develop autologistic models
where the animals’ use of resource units surrounding a
used resource unit is a covariate in a logistic regression
model9. Alternatively, one might use an interpolation
method like kriging30 or some other smoothing algorithm to
create ‘nicer’ maps of distribution. For purposes of project-
ing population size, however, the b coefficients in a logistic
regression model are not biased by spatial autocorrelation,
so estimates of population size should not be affected. The
primary advantage of modeling the spatial autocovariance
is to create more realistic maps of distribution.

Implicit in attempts to model populations based on
habitats is an assumption of equilibrium population dy-
namics. If populations are changing rapidly, we cannot
expect RSF models to remain constant. There are two 
possible approaches to this problem. First, one might model
RSFs at varying population densities to see how the coeffi-
cients vary in a density-dependent fashion31. Another
approach is to model mean population densities assuming
that population fluctuations are attributable to stochastic
fluctuations around some long-term average12. Otherwise,
applications will be limited to species with equilibrium
dynamics occurring at or near carrying capacity.

The value of habitats is not necessarily based upon
their use6. For example, habitats used for sleeping might
not be in short supply nor crucial for survival. Access to
water, however, might be crucial but only a few minutes
each day might be spent drinking. Other approaches can
be taken to evaluate the importance of habitats. For example,
one might multiply the RSF values by the caloric food value
of each habitat to get an index of the value of a habitat
(D.J. Mattson, unpublished). Another approach is to model
the reproduction or survival of individuals as a function of
habitat variables, thereby dissecting components of fitness.
An understanding of the ecology of the species must be
used in the interpretation of RSF models.

Research opportunities
Summarizing his review of definitions of ecology, Krebs32

suggested that ‘we are interested in where organisms are
found, how many occur there, and why’. RSFs can do an
excellent job of describing where, and under certain
assumptions, how many. But RSFs are simply statistical
descriptions of the distribution and use of landscapes, and
as such, do not necessarily help us to understand why
organisms are where they are. In contrast to individual-
based models33 that typically include many details, RSFs
take a broad-scale or top-down perspective characterizing
general patterns on the landscape. RSFs generally will be

Box 5. Northern spotted owls in the Pacific northwest
Declines in habitat for the northern spotted owl (Strix occidentalis caurina) in the
Pacific northwest have been a major conservation concern during the past
decade. We used RSF to evaluate the role of habitat variables in the distribution
of spotted owl nest sites, including several measures of landscape pattern, such
as patchiness, isolation, contagion and fractal dimension26. Our sample unit was
a 2 km2 circle surrounding an owl site, approximately the area of an exclusively
defended territory for a pair of owls. An intensive field survey effort by the USA
Bureau of Land Management (BLM) and Forest Service personnel censused a
total of 1780 owl pairs within the bounds of our study area in western Oregon. We
measured details of habitat within 2 km2 circles at 50 owl sites and 50 random
forest-landscape locations.

We used logistic regression to estimate an RSF from a set of habitat variables
that we hypothesized to be important to the owls, viz:

w* 5 exp[b0 1 b1(OldGrowth) 1 b2(ElevRange) 1 b3(Diversity)]

where w* is the probability of use, ‘OldGrowth’ is the area within the 2 km2 circle
in old-growth forest, ‘ElevRange’ is the range in elevation at the site, and ‘Diver-
sity’ is the Shannon Index of the diversity of forest types within the 2 km2 circle.

Key to linking this relative RSF to population is the calculation of b0. Following
Manly et al.2 we estimated the b0 from the logistic regression analysis by sub-
tracting the ratio of sampling fractions, Pu:Pa. Here Pu is the proportion of used
units sampled and Pa is the proportion of available units sampled. Assuming that
the BLM–Forest Service census of 1780 spotted owl pairs up to 1993 was valid,
Pu 5 50 ÷ 1780 5 0.028 because we measured habitats for 50 out of 1780 
possible pairs of owls. Likewise, we measured habitats at 50 nonoverlapping ran-
dom landscape locations out of 18 079 possible 2 km2 plots that would cover 
the entire study area yielding Pa 5 50 ÷ 18 079 5 0.0028. Thus, a total of 1780
owls occupied a total available 18 079 sites or 9.8% of the sites were used12.

We then estimated w* for each of 50 landscape locations obtaining a mean
w* of 0.098 (±0.031; 95% confidence interval), which is virtually identical with
the proportion of available 2 km2 plots used by spotted owls. The locations of
these owls were accumulated over more than 10 years of sampling, and a sub-
stantial number of the sites had been monitored for several years. Our estimate
of w* is to characterize the location of owl sites, but these owl sites vary in how
frequently they were occupied. We estimated the proportion of years that each
site was occupied, and again modeled this as a function of habitat variables but
using linear regression. Then this proportion was multiplied by w*, which yielded
the probability that a 2 km2 area is an occupied owl site. By summing these over
the study area, we estimated the total population size, thereby allowing our cal-
culations to be cross checked12.

Box 4. Estimating resource selection probability functions
(RSPFs)

There are several study designs that can yield an RSPF directly. Perhaps the 
easiest approach for estimating an RSPF, w*(x), is to use logistic regression on
samples of used and unused units, where the selection function is modeled 
by a logistic function of k independent variables, xi, hypothesized to influence
resource selection, and bi are coefficients to be determined when fitting the
model to data2,24:

w*(x) 5 exp(b0 1 b1x1 1 b2x2 1 … 1 bkxk)/
[1 1 exp(b0 1 b1x1 1 b2x2 1 … 1 bkxk)]

Many statistical packages are available for logistic regression. Input data are the
dependent variable (either zero for unused units or one for used units) and the
corresponding values of the independent variables, xi, measured on each unit.
This approach yields outcomes directly interpretable as probabilities or alterna-
tively as a ratio of odds.
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preferable to individual-based models when data are
scarce and the spatial scale is large. When applicable, RSFs
offer a framework from which to explore the ecological
processes that shape distribution and abundance.

Habitat ecology is a discipline depauperate of theory,
even though habitats are fundamental to population biology,
community ecology, behavioural ecology, landscape ecology,
conservation biology and wildlife management. Indeed,
given the definition of ecology at the beginning of this article,
one might argue that habitat ecology rests at the very core
of ecology.

There are several reasons for the lack of a theory of
habitat ecology. By its very nature, habitat ecology is a
multifaceted process requiring simultaneous consideration
of several variables. However, RSFs based on multivariable
models, such as multiple logistic regression, easily accom-
modate this problem. Interactions with other species,
influences of a variety of physical and biotic factors, and
the structure of the population all can be explicitly built into
the model. Furthermore, habitat ecology is fundamentally
spatial, which always has  been difficult to model. Issues of
scale are readily explored using RSFs constructed at alter-
native scales27, or even multiple scales26. Recent advances
in GIS technology make spatial modeling much easier,
especially when facilitated by RSFs.

RSFs can provide a framework for the development of a
theory of habitat ecology. The simple methods that we
have outlined in this paper forge a link between landscape
ecology and population biology. More generally, however,
ecological and behavioural processes shape the RSF coeffi-
cients. Foraging theory is behind the prediction of resource
selection, providing the mechanisms that shape patterns
of resource use. Likewise, physiological ecology is funda-
mental to predicting resource needs of organisms. If we
can build models to predict the bis, we can generalize models
that incorporate the processes.
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