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ABSTRACT Population assessment is a primary component of ungulate management, but managers are
continuously under pressure to reduce survey cost. Another concern in aerial surveys is accounting for
undetected animals (i.e., visibility bias). Currendy, astratified random block-survey design (hereafter, block-
surveys) is used to develop moose {Alces alces) population estimates in several regions ofNorth America. In
this case study, v^e evaluated the application ofdistance sampling as analternative toblock-surveys inAlberta,
Canada. We conducted distance-sampling surveys in 2010 and 2012 and compared density estimates,
precision (coeff. ofvariation) and flight effort (hr/lOOkm^ ofsurvey area) to block-surveys flown in 2002,
2007, 2009, and2012. To assess sightability bias and subsequently correct for moose missed on the transect
line, vftdeveloped a predictive sightability model using 41 sightability trials with21 radiocoUared moose in
2009 and 2010, Without correcting for visibility bias on the transect line, distance sampling was more
efficient in terms of flight-hours than block-surveys, while providing population estimates with similar or
higher precision. Estimated sightability on the transect line was 67% in 2010 and 46% in 2012, which was
used to re-scale the detection functions. Considering that population estimates fromblock-surveys asapplied
in Alberta are based on observable moose, distance sampling with a sightability correction likely provided
more accurate estimates. Our results support the application ofdistance sampling asanalternative to block-
surveys, but we suggest further investigation of methods for correcting visibility bias on the transect line.
© 2014 The Wildlife Society.
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Population assessment is one of the primary components of
moose {Alces alces) management, and aerial surveys are the
most practical tool for estimating moose population size in
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North America. Accounting for missed animals without
adding substantial cost remains a fundamental concern
(Wardet al.2000). The magnitude ofvisibility bias, the sum
of the underlying causes for incomplete detection, is
especially underestimated in heterogeneous landscapes
(Pollock et al. 2006). Visibility bias is a function of
perception bias and availability bias. The former occurs
when observers miss potentially visible animals, while the
later occurs when animals are not available to be detected

(e.g., they may be covered by vegetation; Marsh and
Sinclair 1989). Distinction between both sourcesof visibility
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biascanbe difficult and methodsto accountfor visibility bias
will often only correct for bias from one source (Buckland
et al. 2004). For example, using dual observers only corrects
for perception bias, not availability bias (Marsh and
Sinclair 1989, Buckland et al. 2004). In general, studies
correcting for both types ofvisibility biassimultaneously are
rare, even though availability bias maybe muchlarger than
perception bias.

Ideally, moose populations should be estimated in small
survey areas with complete survey coverage and high
certainty of detection or survey-specific detection estimates
based on known (i.e., marked) animals (e.g., Keech
et al. 2011). However, such surveys are rarely feasible
because of high costs of complete coverage in larger survey
units, necessitating statistical sampling approaches. Among
the most common techniquesin aerialpopulation estimation
are plot or strip-based methods (Bucldand et al. 2001) and
for moose, either individual animals or their tracks are
counted (Gasaway et al. 1986, VerHoef 2008). In our study
areain Alberta, Canada, and several other regions in North
America a stratified random block-survey design (hereafter,
block-surveys) developed by Gasaway et al. (1986) is used.
This method uses preliminary stratification flights to classify
the survey area into survey units based on moose counts,
tracks, or habitat characteristics. Upon stratification, survey
units are resurveyed at randomwith increased effort. Similar
to other block or strip-based methods, this moose block-
survey design is very flight-intensive, especially for low-
density moose populations, and these high costs often limit
their frequency and spatial extent (Ward et al. 2000). With
respect to visibility bias, block-surveys canbe corrected with a
sightability correction factor, traditionally developed by
resurveying smaller portions of the general survey unitswith
higher search effort (intensive survey) and estimating the
proportion of moose missed during the general survey
(Gasaway et al.1986).However,sightability of moosecanbe
low, especially in regions with dense vegetation cover where
availability bias may be underestimated. Therefore, even
during avery intensive search it isunlikely that allmoose will
be observed and moose population estimates from block-
surveys will still be biased low (Quayle et al. 2001). In
addition, in our studyareamoose densities can be below the
recommended threshold of 0.39 moose/km^ where estimat
ing a sightability correction factor is economically feasible
(Gasaway et al. 1986). Thus, usually no sightability
correction factor is estimated in Alberta and results from

block-surveys canonlybe considered minimum estimates of
observable moose.

Distance sampling is gaining popularity for estimating
animal abundance across many taxa, but it has been rarely
used to estimate moose densities (Nielson et al. 2006). In
contrast to block-surveys, where the probability of detecting
a moose (g(y)) is assumed to beconstant for all distances (y)
within a fixed transect width (e.g., in Alberta commordy
200m),distance sampling uses the perpendicular distances to
estimate detection probability as a function of distance
(Buckland et al. 2001, Laake et al. 2008). The most critical
assumption for distance sampling is that animals on the
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transect center line are detected with certainty (^(0) = 1;
Buckland et al. 2001). Double-observer approaches are
commonly used to correctfor perceptionbiason the transect
line during distance sampling surveys (Manly et al. 1996),
but this technique cannot account for availability bias.
Sightability models that can correct for both types of
visibility biascanbe developed usingknown, markedanimals
by relating the probability of detection to covariates that

. influence sightability (Anderson and Lindzey 1996).
In this case study, we first evaluated the potential of

distance sampling for moose population estimation in a
survey area with moderate moose densities in west-central
Alberta relative to traditionally used block-survey method
ology. In general, survey methods can be compared in terms
of accuracy of the estimate (i.e., moose density), precision
(coeff ofvariation[CV]) and survey effort.Complete census
data were not available in our study area and block-survey
and distance-sampling results overlapped onlyduring 1 year.
Therefore, we focused our comparison between the 2
methods mainly to flight time efficiency (hr/lOOkm^) and
the CV of density estimates. We also discuss density
estimates for the simultaneously flown block- and distance-
sampling surveys in 2012. We hypothesized that distance
sampling would provide more precise moose population
estimates, while requiringlesssurvey effort. Additionally, to
assess whether^0) = 1, we surveyed radiocollared moose at
known locations independent of distance or block-surveys.
We hypothesized that ^0) < 1 because of visibility bias, in
which case we would rescale the detection function to the

estimated probability of detecting moose using a predictive
sightability model for^O). Based on previous studies, we
expected canopy closure and/or group sizeto affect visibility
of moose on the transect line (e.g., Gasaway et al. 1986,
Anderson and Lindzey 1996, Quayle et al. 2001).

STUDY AREA

We conducted distance sampling and block-surveys in the
4,606-km^ Wildlife Management Unit 353 (54°N/117^W),
which was representative (i.e., vegetation composition and
elevation) of a broader study area in which sightabilitytrials
were flown (Fig. 1). We flew sightability trials on
radiocollared moose in the region surrounding unit 353 in
west-central Alberta and east-central British Columbia,
Canada. Climate in the study area is subarctic with short,
wet, cool summers and long, dry, and cool winters (Smith
et al. 2000). Vegetationwas characterized by pure lodgepole
pine (Pinus contorta) or lodgepole pine and black spruce
{Picea mariana) forests on drier, low-elevation sites, and
mixed balsam fir {Abies lasiocarpa), spruce {Picea spp.), and
lodgepole pine forests on more mesic, higher elevation sites.
Alongdrainages, willow {Salix spp.), birch{Betula spp.), and
some aspen {Populus tremuloides) were interspersed with dry
grassybenches.The study area experienced substantial levels
of human disturbance and was characterized by high
densities of forest harvests and linear developments (e.g.,
roads,pipelines, seismic lines; Smith et al.2000). Elevations
in unit 353 ranged from 650m to 1,600m, similar to
elevations of the whole study area (650-1,880 m).
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Figure 1. Study area located inwest-central Alberta andeast-central British Columbia, Canada. Stratified random block-surveys toestimate moose population
size wereconducted in2002,2007,2009,and2012inwildlife management unit (WMU)353(2009 onlyshadedareawassurveyed). Forcomparison ofprecision
and flight effort, distance-sampling surveys were conducted in 2010 and2012 in WMU 353. Sightability data were collected using radiocollared moose in
winters 2009 and 2010 to develop a moose predictive sightability model.

METHODS

Stratified Random Block-surveys
We surveyed unit 353 completely duringJanuaryor February
in 2002,2007,2012, and partially in 2009(about0.75 of the
unit; Fig. 1) using block-surveys. We conducted fixed-wing
stratification in 2002, 2007, and 2009 following Gasaway
et al. (1986). We flew stratification flights usinga Bell206Jet
Ranger helicopter in 2012 for simultaneous comparison of
block- and distance-sampling surveys (see below). The
general survey was flown following Gasaway et al. (1986),
and modified by Alberta Fish and Wildlife Division
following Lynch and Shumaker (1995) and Lynch (1997).
Survey unitswere5-minute latitude x 5-minute longitude in
size and a minimum of 5 survey units from each of 3 density
stratawere randomlychosenand re-surveyed with a Bell206
Jet Ranger helicopter at about 80-140 km/hour. Transect
line spacing was 400m and the survey altitude varied
between 80 m and 100 m above ground level. Flight crews
consisted of 4 experiencedobservers, including the pilot. We
estimated population densityand its CV following Gasaway
et al. (1986) and recorded survey effort in hour/100 km^.
Distance Sampling
Distance-sampling surveys were conducted in unit 353 on
5 days between January and March in 2010 and 6 days in
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January 2012. We conducted surveys during high-visibility
weather conditions and complete snow coverage with a Bell
206 Jet Ranger helicopter with bubble windows. We
established systematic transects every 3 minutes of latitude
in 2010. In 2012 we collecteddistance-sampling data during
stratification for block-surveys at every minute of latitude,
but conditions were less suitable in 2012 than 2010 (see
Discussion section). We flew transects following a Global
Positioning System (GPS) at 80-100 m above ground level
and 80-140 km/hour. Surveys were conducted by 4 experi
encedobservers, includingthe pilot, similarto block-surveys.
In addition to the pilot, the front-left observer was
responsible for detecting moose near the transect line
through the foot-window of the helicopter and the rear
observers recorded moose on each side. The rear-right
observer recorded locations of moose with an independent
GPS to measure perpendicular distances from the transect
linefollowing Marqueset al. (2006) in ArcGIS 9.3. Once the
helicopter was perpendicular to the initial location of the
observed moose, it went off the transect line to record its
location. Moose groups were the unit of observation to
ensure independence (Buckland et al. 2001) and included
closely aggregated moose (i.e., <30 m apart). The rear-left
observer recorded covariates including composition (male,
female, cow-calf), moose activity (bedded, standing, or



moving), light intensity (flat orbright), and topography (flat,
moderate, steep). We classified canopy closure in3categories
at 33% intervals based on figures byUnsworth et al. (1994).

Distance-sampling data were analyzed in Program Dis
tance V. 6.0. release 2 (Thomas et al. 2010). We conducted
exploratory analysis to determine a suitable truncation
distance improving model fit of the detection fiinctions
(Buckland et al. 2001). Modeling the detection fiinction
followed a 2-stage approach, where first a keyfiinction was
selected and then a series expansion (adjustment term) was
added (Buckland et al. 2001). We considered robust
combinations of key fianctions and up to 3 adjustment
terms following recommendations ofBuckland et al. (2001).
Our a priori candidate models were a half-normal key
fiinction with the option of hermite adjustment terms, a
uniform key fiinction withtheoption ofcosine orpolynomial
adjustments, and a hazard-rate key fiinction with cosine
adjustments. We fiirther considered multiple-covariate
distance sampling byincluding variables thatwere significant
in thesightability probability model forthetransect line (see
below) to improve precision andmodel robustness (Marques
et al. 2007). The best detection fiinction was determined
using Akaike's Information Criterion (AIC), where the
model with the lowest AIC is considered the most

parsimonious (Anderson et al. 1998). We examined results
from goodness-of-fit tests (x^ GOF) and qq-plots, especially
at;;= 0, to detect potential violations to the assumptions of
distance sampling (Buckland et al. 2001).

We used a size-bias regression estimator to obtain an
unbiased estimate of the expected group size in Program
Distance by regressing the log of moose group size against
the probability of detection at distance x {^x)\ Buckland
et al. 2001). Our systematic sampling design permitted the
useof the S2variance estimator in Program Distance, which
is a post-stratification sampling scheme to estimate
encounter rates for moose with greater precision (Fewster
et al. 2009). The total variance of the density estimate was
estimated analytically by combining the individual variances
of the model components using the delta method
(Seber 1982).

SightabilityTrials
Moose were captured and radiocollared via helicopter net-
gunning (Carpenter and Innes 1995) during winters of2007
and 2008. Net-gunning protocols followed Alberta Fish and
Wildlife Division (2005) guidelines and were approved by
the University of Montana Animal Care and Use Protocol
056-56MHECS-010207. We used 7 veiy-high-frequency
(LMRT 4; Lotek Wireless, Inc., Newmarket, ON, Canada)
and 14 GPS radiocoUars (G2000L; Advanced Telemetry
Systems, Inc., Isanti, MN)for sightability trials (Fig. 1)and
radiocoUars weredistributedacross a range of representative
habitat conditions.

We conducted sightabiUty surveys in February 2009 and
February and March 2010 on 3 days under conditions in
which aerial moose surveys would be conducted in Alberta.
First, we located radiocoUared moose from a fixed-wing
aircraft (Cessna 336/7 Skymaster) and projected a randomly
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located sampling block of 1.6km x 1.6km (buffered by
300m to avoid edge effects) over the moose. We then
surveyed sampling blocks in accordance to block-survey and
distance-sampling protocols described above (e.g., in terms
of survey speed, ht above ground level). Transects were
spaced 400m apart, and we recorded every moose detected
(regardless ofwhetherit wascoUared). Also, we assessed the
samecovariates as for distance sampUng (see above) for each
moose observation. A missed radiocoUared moose was

relocated immediately with radiotelemetry equipment
mounted to the helicopter. We discarded trials if missed
moose weremoving oncerelocated with telemetry, because it
was impossible to determine the initial location of a missed
moose. We resampled radiocoUared moose, but time
between surveytrials was >1 day.

To explore the relationship between the independent
categorical covariates and the probability of detection, we
initiaUy conducted univariate tests using contingency
tables at an alpha-level of 0.05. The effects of distance on
whether a moose group was observed (1) or not (0) was
examined usingunivariate logistic regression and non-Unear
transformations of distance (Hosmer and Lemeshow 2000).
FoUowing univariate analyses, wedeveloped an apriorisetof
multiple logistic regression candidate models. Categorical
covariates were estimated using reference ceU coding
(Hosmer and Lemeshow 2000). We screened aU candidate
covariates for coUinearity based on a Pearson's correlation
threshold of \r\ >0.6 and included the variable with the
lowest log-UkeUhood andsmallest P-value in the model. The
logistic regression model predicting moose sightabUity (Y),
can be written as:

Y= exp^/1 + exp^,
where the linear equation of the
model including the predictor covariates {xi, ..., x^)
influencing sightability. We selected the top model using
AAICf and evaluated model fit using the Pseudo
Hosmer-Lemeshow's C-statistic, classification tables, and
the area under the receiver operating characteristic curve
(Hosmer and Lemeshow 2000). We conducted data analysis
using Statav.10.1 (StataCorp LP, CoUege Station, TX).

Correcting for Sightability Bias at j; = 0
In Program Distance, a correction factor for^(0)< 1 canbe
incorporated byspecifying thepointestimate ofthedetection
probability on the transect line as a divisor and its standard
error (SE; Buckland et al. 2004). After testing whether g
(0) = 1 andestimating the shape of the detection function for
surveys flown in unit 353 with assuming ^0) = 1, we
corrected the detection function for ^0) < 1 to shift the
intercept accordingly. To estimate the average detection
probability for the transect line, we used the model
parameters from our logistic regression model developed
above to predict the probabiUty that an observed moose
would be detected at = 0 during the distance-sampUng
surveys. We used the^O) to predict the probabiUty of
detection for observed moose groups within 0-25 m and its
SE, estimated with the delta method (Seber 1982).
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Table 1. Moose population density estimates (D)per km^ from helicopter-based stratified random block (SRB) surveys (uncorrected for sightability bias)
and distance sampling (DS) during 5survey years, the survey area (km^), upper and lower 90% confidence intervals (CI), coefficient ofvariation ofthedensity
estimate (CV(D)), the fixed-wing aircraft survey effort (hr/100 km^), and the helicopter survey effort (hr/100 km^) for wildlife management unit 353 inwest-
central Alberta, Canada.

90% CI

Method Year Survey area b Lower Upper CV{b) Fixed-wing effort Helicopter effort

SRB 2002 4606.3 0.28 0.210 0.350 0.156 0.395 0.825

SRB 2007 4579.5 0.51 0.423 0.600 0.106 0.581 0.908

SRB'' 2009 2772.0 0.32 0.238 0.402 0.160 0.297 0.819

SRB 2012 4606.3 0.44 0.384 0.496 0.128 0.802'^ 0.999

DS^ 2010 4606.3 0.30 0.233 0.383 0.150 0 0.349

DS,dj' 2010 4606.3 0.45 0.270 0.735 0.293 0 0.349

DS'^ 2012 4606.3 0.42 0.358 0.485 0.076 0 0.803

DS,dj' 2012 4606.3 0.90 0.479 1.650 0.322 0 0.803

" Only portion of wildlife management unit 353 wassurveyed.
DS, the probability of detection on the transect linewas assumed to be complete (^0) = 1); DSadj, the probability of detection on the transect linewas
estimated at 0.671 in 2010 and 0.463 in 2012 and the detection function was adjusted accordingly.
Stratification conducted with helicopter instead of fixed-wing in 2012 (seeMethodssection).

Comparison of Distance Samplingand Stratified
Random Block-surveys
We conducted most block-surveys (2002, 2007, and 2009)
and distance-sampling (2010) surveys in different years.
Because of promising distance-sampling results in 2010 (see
below) we conducted one simultaneous survey trial of both
methods in 2012 to standardize conditions. Because absolute

moose densities were unknown for all survey years and
most surveys did not overlap temporally, we focused our
comparison of results on the CV of density estimates and
survey effort (hr/100 km^, including feriy time between
survey plotsor lines, but excluding ferry timefromthe airport
to the survey region). We compared density estimates from
both methodsonlyfor data collected simultaneously in 2012.
Further, because block-surveys were uncorrected for sight-
ability, wecompared effort andprecision forbothunadjusted
(as an approximation for standardization) and adjusted
distance-sampling results (including our J{0) correction
factor).

RESULTS

Stratified Random Block-Surveys
The CV of moose density estimates from block-surveys
ranged between 0.106/km (2007) and 0.160/km^ (2009;

Table 1). Helicopter survey effort varied between 0.83 and
1.0 hours/100 km^ and fixed-wing survey effort varied
between 0.30 and 0.58 hour/100 km^ (no fixed-wing data for
2012; Table 1). We provided density estimates for general
information (Table 1).

Distance Sampling
In 2010weflew 33 transects fora transectlength of777.9 km
and observed 124 moose in 76 groups.The observed group
size varied between 1 and 4 moose (/x= 1.606, SE = 0.089).
Because the estimated expected group size of 1.413
(SE= 0.073) was suggestive of size bias, we used the
expected groupsize to estimate moose density ratherthan the
meangroup size(Buckland et al. 2001). The encounter rate
of moose groups {jilV) was 0.09moose/km. We selected a
truncation distance of 368m, which represented the 95th
percentile of all distances recorded, corresponding to the
distance at whichthe probability of detectionwasabout 15%
(Buckland et al. 2001). This removed 5 data points, leaving
71 moose groups for detection fiinction modeling.

Based on the lowest AIC and model fit close to the transect

line, a half-normal model with no adjustment terms was
selected (Table2; Fig.2).This detectionfiinction estimated a
moose population density of 0.30 moose/km^ (CV=0.150)
with a probability of detection of 0.59 (CV= 0.110). We

Table 2. The number of parameters U), the P-value from the goodness-of-fit test (GOF), the estimated average detection probability (Pa) and its
coefficient of variation CV(Pfl), and the estimated moose density (£>) per km^ and its CV for all candidate conventional distance-sampling detection
functions that fellwithin 2 Akaike'sInformation Criterion values(AAIC) from the top model to estimate moose density in Program Distance 6.0 release 2.
Competing models forhelicopter distance sampling in wildlife management unit 353in west-central Alberta, Canada, areonlyshown forsurveys conducted
in 2010 because of high modelselection uncertainty that year (in contrast to low modelselection uncertainty in 2012).

Model key Adjustment term k AAIC x'GOF Pa CV(Pa) b CV(D)

Half-normal None 1 0.00 0.974 0.59 0.110 0.30 0.150

Uniform Cosine 1 0.27 0.961 0.57 0.080 0.31 0.131

Uniform Simple polynomial 1 0.28 0.981 0.65 0.040 0.30 0.113

Uniform Cosine 2 1.40 0.969 0.65 0.160 0.28 0.131

Uniform Simple polynomial 2 1.48 0.972 0.61 0.110 0.29 0.151

Half-normal Hermite polynomial 2 1.52 0.967 0.64 0.181 0.28 0.210

Half-normal Cosine 2 1.68 0.959 0.64 0.190 0.28 0.218

Hazard-rate None 2 1.98 0.959 0.69 0.094 0.28 0.234
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Figure 2. Histogram ofmoose groups detected as afunction ofdistance from ahelicopter line-transect survey inwildlife management unit 353 inwest-central
Alberta, Canada, during winter 2009-2010. Graph Ashows the estimated half-normal detection probability function (no adjustment terms) ofmoose groups if
noanimals were left undetected along thetransect line (^0) = 1).Graph Bshows therescaled detection function with aprobability ofdetection onthetransect
line of̂ 0)= 0.671, estimated with asightability model. Rescaling the half-normal detection function shifts the intercept ofthe ftinction down, which adjusts
for thebias ofdecreased detection along thetransect line. Finally, rectangle Cshows the area thatisassumed tohave equal probably ofdetection during stratified
random block-surveys (200 moneach side ofthehelicopter). Inthis example, uncorrected stratified random block-surveys following methods outlined by Lynch
and Shumaker (1995) and Lynch (1997) underestimate moose densities bytheproportion ofthearea under rectangle C minus thearea under graph Bouttoa
distance of 200 m.

observed high model-selection uncertainty (i.e., AAIC < 2;
Bumham and Anderson 2002) between the top model and
other detectionfunctions (Table2). However, all competing
models showed good fit, with P-values from x^-GOF tests
between 0.959 and 0.981, and theyyielded similar detection
probabilities (Pa; between 0.57 and 0.69) and density
estimates (between 0.28 and 0.31) with overlapping confi
denceintervals (CIs;Table 2 [Buckland et al.2001]).Finally,
using the multiple-covariate distance-sampling framework,
theonlyvariable selected based onAIC was moose group size
and the AAIC to the top conventional distance-sampling
model was only 1.23. Given that moose group size was
already accounted for using conventional distance sampling
withthe size bias regression estimator and the small AAIC,
we selected the conventional distance-sampling model for
simplicity. The effective strip width was 210.70 m.

In 2012, our survey effort was higher using simultaneous
block-survey stratification andweflew 75transects totaling a
transect lengthof2000.7km.We observed 401moose in296
groups and group sizes varied between 1 and 4 moose
(/X = 1.366, SE = 0.032).The estimated expectedgroup size
(1.362 with SE= 0.030) was not suggestive of size bias and
the average group size was used. We selected a truncation
distance of 372 m (7%) similar to the distance-sampling
survey in 2010 and used the remaining 275 moose
observations fordetection function modeling. A half-normal
key fiinction with no adjustment terms and "canopy closure"
as a categorical variable (Fig. 3) was superior bya AAIC of
21.36 to the next best conventional distance-sampling
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model, which was a uniform key model with 3 cosine
adjustments terms. Because model selection uncertaintywas
very low, we do not report results from other models, but
overall model parameters compared well between highest
ranked models (W.Peters, unpublished data). The encounter
ratewas0.137moose/km. Our top modelestimated a moose
density of 0.42/km^ with a CV of 0.076 (Table 1). The
probability of detection of 0.60 (CV= 0.040) and the
effective strip width of 223.88m were similar to the 2010
survey.

Sightability Trials
We flew 7 sightability trials in February 2009 and 34 in
February and March 2010, with each moose surveyed 1-3
times. During 41 sightability trials, 20 radiocollared moose
(49%) were missed within the 200-m strips on either side of
the helicopter and therewas no difference in sightability by
gender (x =0.93, P = 0.628). Univariate analysis indicated
that group size, canopy closure, and terrain significantly
affected sightability (Table 3). Buildingfrom these univari
ate relationships, the best-fitting multiplelogisticregression
model from our candidate model set was a function of group
size, terrain,and canopy closure with allpredictorcovariates
being significant at an alpha-level of 0.05. Further, we
additionally included "distance" in our top sightability model
although the predictor variable was not significant
(jP= 0.727), because our distance-sampling data clearly
indicated that detection probability declines with distance
fromthe transectline. Possibly, "distance" wasnot significant
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Figure 3. The estimated detection functions for moose in 3 different observed categories of canopy closure modeled in the multiple-covariate distance-
sampling analysis engine inProgram Distance 6.0release 2.The helicopter distance-sampling survey was conducted inwildlife management unit353inwest-
central Alberta, Canada, in February 2012.

because of our small sample size, but not including this
important variable could lead to an overestimation of
sightability bias on the transect line (Buckland et al. 2001).
Moose sightability decreased for single moose (j0=-3.71,
SE = 1.270) and increasing distance (m; -0.004,
SE = 0.012). Sightability increased in flat topography
(j8 = 3.34, SE = 1.393) and open canopy (0-33%;
)8 = 2.159, SE = 1.040). The categorical variables for
intermediate canopy closure (34-66%), high canopy closure

(67-100%), groups of 2 moose, groups of >3 moose, and
uneven terrainwere combined in the intercept (jSo = —1.20,
SE = 1.641). The model predicted moose sightability well
according to the Hosmer and Lemeshow statistic
(x^= 4.01, df=10, P=0.86). Classification success was
good (overall 85.4% at a cut-point probability of 0.5), with
high classification of both detected (i.e., sensitivity = 90.5%)
and missed (i.e., specificity = 80.0%) moose. The receiver
operating characteristic value of 0.93 indicated outstanding

Table 3. Mean (SE) perpendicular distance of detected or missed radiocoUared moose from the transect line, and number of detected or missed moose in
each group-size category, activity class, canopy-closure category, terrain class, and light-intensity category (on the side where the moose was detected or
missed) duringhelicopter-based sightability surveys in west-central Alberta and east-central British Columbia, Canada, in February 2009 andFebruary and
March 2010.

Covariate Detected SE Missed SE P

Distance (m)
5^(SE) 72.5 59.34 95.3 50.21 0.19V

Group size
1 4 15 >0.001''
2 11 4

>2 6 1

Canopy closure
Low (0-33%) 15 5 >0.001''
Medium (34-66%) 5 7

High (67-100%) 1 8

Activity
0.262''Bedded 10 13

Standing or moving 11 7

Terrain

Flat 19 10 0.004''
Uneven 2 10

Light
0.899''Flat 17 15

Bright 4 5

P-value from univariate logistic regression.
^ P-value from univariate x contingency analysis.
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discrimination ability of the model (Hosmer and
Lemeshow 2000).

Correcting for Sightability Bias Qty = 0
In 2010 the average probability of detection of observations
{n = 10)on the transect line (y= 0, here 0-25m)was 0.671
and the SE was 0.169 (df=9). In 2012, the average
sightability on the transect line was lower, with 0.462
(SE = 0.145, df= 48) basedon 49 observations. Using these
values as multipliers in Program Distance changed our
density estimate for moose and the associated CV to
b = 0A5 and CV = 0.293 in 2010 and D = 0.90 and
CV = 0.322 in 2012 (Table 1). We illustrated the change
in the detection function with the simpler half-normal
function for survey data from 2010 in Figure 2. Correcting
the population size estimate for decreased probability of
detection on the transect line increased the density estimate
and itsCVby35.6% and 95.3%, respectively. The correction
factor for J{0) contributed the most (73.8% in2010 and 94.4%
in 2012) toward the total variance of the density estimate.

Comparison of DistanceSampling and Stratified
Random Block-Surveys
The density estimate from theunadjusted distance-sampling
survey in 2010 had a comparable CV (0.150) to the block-
surveys conducted in previous years (Table 1). In contrast,
the CV (0.076) of the uncorrected distance-samplingsurvey
was much lower in 2012 compared with block-surveys.
Density estimates of simultaneously conducted distance
sampling and block-surveys were similar in 2012 (Table 1).
The helicopter flight effort necessary to complete the survey
was higher for block-surveys requiring between 0.82 and
1.00 hour/100 km^ compared with 0.35 hour/100 km^ for
the distance-sampling survey in 2010 and 0.80 hour/100 km^
in 2012. Furthermore, block-surveys required fixed-v/ing
stratification flights (survey intensity between 0.30 and
0.58 hr/100 km^), while distance-sampling estimates did not
require stratification (Table 1). No fixed-wing stratification
results wereavailable for the 2012block-survey (see Methods
section). The CVs of the adjusted distance-sampling
estimates (CV = 0.293 in 2010 and CV = 0.332 in 2012)
were higher than the CVs from the unadjusted distance
sampling and the uncorrected block-surveys (Table 1)
because of the added variance from thej{0) correction
factor. No sightability correction factor was available for the
block-surveys. However, correcting block-surveys would
similarly increase CVs higher than adjusted distance
estimates.

DISCUSSION

Distance Sampling and Sightability at ^0)
Previous studies indicated that distance samplingcouldbe a
viable alternative to conventional survey techniques to
estimate ungulate population densities (Shorrocks
et al. 2008, Young et al. 2010, Schmidt et al. 2012), but
it hasbeen rarely used to assess moose population size. Our
results suggest thatdistance sampling provides at least equal,
if not greater, precision on estimates of density than
traditional block-surveys in the forested foothills ofAlberta.
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However, we also showthat in forested habitatsthe critical first
assumption of perfect detection on the transect line (i.e., g
(0)= 1) is likely always violated. It is possible to address this
bias with a|{0) correction factor derived from a predictive
sightability model or v^th other methods described by
Buckland et al. (2004; see below). The second main
assumption, that transects should be randomly distributed
with respect to moose, canbe accommodated with helicopters
in the plains, foothills, and even. mountains (e.g., Schmidt
et al. 2012). Experienced pilots are required to keep the
helicopter approximately on the transect line, and very long
transect lines should be avoided because they may increase
observer fatigue. The third assumption, that moose do not
move in response to helicopter noise, appeared to be met
because our data did not reflect detection of more moose

groups at further distances. Lasdy, wewere able to ensure that
perpendicular distance estimates were precise following
Marques et al. (2006). Addressing these fourbasic assumptions
ofdistance sampling illustrates the applicability ofthis method
for moose population estimation. Moreover, theease ofuse of
the graphic user interface in Program Distance shoiald
encourage more widespread application for moose surveys.

Distance-sampling studies correcting for both types of
visibility bias (availability and perception bias) are rare, and
separation of both types may be difficult in most study areas
(Pollock et al. 2006). For example, depending on the angle of
approach, a moose bedded under a tree may beavailable to be
detected or not. Because we used only experienced observers
andsightability blocks or transects that were shortenough to
avoid observer fatigue, we assume that perception bias was a
small component ofoverall visibility bias. Therefore, wereason
that availability bias would be the main determinant of the
proportion of missed moose in our study. This suggests that
double-observer distance sampUng would be insufficient to
correct forvisibility bias, because such methods mainly correct
forperception bias (Laake et al. 2008). Thus, theapplication of
a predictive sightability model may improve the accuracy and
precision of population estimates over the double-observer
approach or the use of a static correction factor.

Methods to estimate correction factors for ^(0) < 1 with
higher robustness such as a Horwitz-Thompson-like
estimator (Bucldand et al. 2004) are not currentlysupported
in Program Distance and we aimed to account for both
components of visibility bias in our distance-sampling
population estimates by incorporating a^O) point estimate
predicted by the average sighting probability of moose at
y = 0. Using a point estimate, as in this case study, may be
robust only if factors affecting moose detection probability
are fairly evenly distributed across the survey areaor sample
sizes arevery large. Especially for 2010,we believe that our
estimates for sightability bias on the transect line were
reasonable given the relatively dense forest canopies and
moose densities in our study area. Our adjusted distance-
sampling estimates resulted in differentsightability estimates
in 2010 (0.671) and 2012 (0.462). We interpret these
differences in sightability between the 2 years resulting from
differences in survey conditions. In particular, snow
conditions were much less suitable in 2012. Snow was not
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a covariate in our sightability model,because the modelwas
developed with a limited range of snow-cover measurements
during our surveys. Further, temperatures were higher and
winds much stronger in 2012 and moose mayhave selected
morecover in 2012than in 2010,decreasing their sightability
and introducing more variability (LeResche and
Rausch 1974).Overall, we stress that our sightability model
is preliminary and suggest that future research should focus
on refining methods to correct for ^0) < 1.

The detection rateduring sightability trials was low(51%),
but similar to detection rates from other helicopter
sightability surveys of moose in forested ecosystems. For
example, sightability was 49% in British Columbia (Quayle
et al.2001), 59% in western Wyoming, USA (Anderson and
Lindzey 1996), 57% in northern Ontario(Thompson 1979),
and 48% in Minnesota, USA (Giudice et al. 2012). Also, our
predictor covariates for sightability were supported by
previous studies (LeResche and Rausch 1974, Anderson
and Lindzey 1996, Quayle et al. 2001). The classification
success of our model (85%), the sensitivity (detected moose,
91%) and specificity (missed moose, 80%) indicated that the
modelwasableto overall correctly classify moosesightability
very well. This result supports the potential use of our
sightability model in foothills and boreal plains of west-
centralAlberta under similarsurvey conditions. In compari
son,other moose sightability models correctly classified 83%
(Anderson andLindzey 1996) or 79% (Quayle et al.2001) of
all moose observations as missed or detected.

Finally, precision of distance-sampling estimates couldalso
be improved using a multiple-covariate distance-sampling
framework (Marques et al. 2007). Additional covariates in
addition to distance can account for un-modeled heteroge
neity by modifying the shape and scale of the detection
function for different covariate values (but still assume g
(0) = 1; Buckland et al. 2004). Our 2010 distance-sampling
results were not improved, however, by includingadditional
covariates besides group size. Because the AIC value of the
model with group size was not significantly .different (i.e.,
within 2 AAJC) from our top conventional distance-
sampling model, and detection probabilities and population
estimates were very similar, we accounted for the effect of
group size using size bias regression with conventional
distance sampling. However, in 2012 when more observa
tionswerecollected (72 moose groupsin 2010vs.275 moose
groups in 2012), the model that includedcanopyclosure as a
categorical variable was selected by >2 AAIC values,
indicating low model selection uncertainty. Multiple-
covariate distance sampling estimated variation in the
detection probability between canopy closure categories,
which would have been ignored by conventional distance
sampling.

Comparison of Distance Sampling and Stratified
Random Block-Surveys
Although CVs of unadjusted distance-sampling estimates
were similar to the CVs of uncorrected block-surveys, both
methods underestimated variance because of un-modeled

detection probability heterogeneity (Laake et al. 2008) and
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population size. We wereunable to correctthe block-survey
densityestimates and CVs, but correcting block-survey data
for sightability biaswould also be possible with a predictive
sightability model if covariates were collected during future
surveys (C^iayle et al. 2001). Other approaches have been
suggested, such as counting marked moose in the general
survey units and estimating a sightability correction factor
based on the proportion of detected tagged moose (Boertje
et al. 2009) or using thermal imagery (Millette et al. 2011).

Includingthe sightability correction factorin the distance-
sampling estimates inflatedCVs compared with uncorrected
block-surveys. However, estimates that adjust for missed
animals should be more accurate (Buckland et al. 2001). To
increase precision of the densityestimate, one couldincrease
the survey effort.Poolingdistance data overdifferentyears or
similar survey areas would also assist in developing a more
precise global detection function for moose (Buckland
et al.2001).However mostimportantly, precision ofadjusted
distancesurveys would decrease if the sightability model can
be improved with a largersample size. This wouldreducethe
high variation resulting from the ^(0) correction, which
contributed the most toward the total variance ofour moose

population density estimate. Although collecting more
sightability data to improve our model would be costly
initially, it would also increase precision and accuracy of the
correction factor and decrease survey effort required to
achieve desired CVs.A dynamic sightability correction factor
based on a robust predictive model in combination with an
appropriate sampling protocol could be extended to other
regions as long as survey conditions are comparable.

Distance-sampling densityestimates should approach true
density closer than block-surveys, because assumptions of
block-surveys are often not met (aswe showed) and because
more information is incorporated in the estimator
(Dalton 1990). Surprisingly, in 2012, the density estimate
derived from the uncorrected block-survey was slightly
higher than the unadjusted distance-sampling estimates
although we expected higher distance-sampling density
estimates because of the inherent sightability correction
(Buckland et al.2001).The 90% CIs of the densityestimates
of both methodsoverlapped, but distancesamplingproduced
a density estimate with higher precision. In Alberta, block-
surveys use a (half)strip width of200 m and it is possiblethat
sightability may be relatively constant up to that distance.
This is supported by the non-significance of the covariate
"distance" in our sightability model, and the effective strip
widths of 210-220 m from our distance surveys. Lastly,
block-surveys allow departures of the helicopter from the
transect line, and more variability in airspeed and height or
circling above closed habitat (Gasaway et al. 1986). These
variations may increase moose sightability and lead to less
biased density estimates than expected.

A comparison of the unadjusted distance sampling and
uncorrected block-survey estimates seemed to indicate an
increase in moose population size between 2010 and 2012.
However, the 90% CIs overlapped between2010 and 2012,
and thereforewe can only conclude that the true population
parameter lies between the lower and the upper CI.
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Although it is troubling that we cannot detect an almost
twofold change, we emphasize that our goal was to
demonstrate the utility of distance sampling for moose
population estimation, and suggest development of a more
rigorous sightability estimator. In general, several years of
survey data should be collected to determine trends in
population size (Boertje et al. 2009). However, moose
densities may have actually increased in ourstudy area. First,
unit 353 has experienced extensive forest harvest, with the
potential to produce higher moose densities (Rempel
et al. 1997), especially when predation pressure is low
(Boertje et al. 2009). In our study area, wolf{Cants lupus)
harvests are highin order to recover thedeclining population
ofcaribou {Rangifer tarandus). Concurrently, moose harvest
rates declined between 2010 and 2012. In 2010 and 2011, the
harvest goal was 35% of antlered and 20% of antlerless
moose, but only 36-50% of the harvest quota was met (D.
Hervieux, Alberta Sustainable Resource Development,
unpublished data). We also observed high moose survival
rates, with 1 death out of 33 radiocollared adult moose that
were monitored for >1 year between 2008 and 2011 (W.
Peters, unpublished data). Finally, allcaptured female moose
were pregnant — Haigh et al. 1993). Despite these
biological reasons that moose density could have increased,
the overlapping 90% CIs emphasize the need to improve the
sightability component of distance sampUng for moose.

Regardless ofdiscussion ofthecomparative precision ofthe
different methods, the unadjusted distance-sampling survey
was more than twice as efficient (measured in helicopter-
hours/lOOkm^ of survey area) than uncorrected block-
surveys. Forexample, assuming approximately 780 Canadian
Dollars (C$)/helicopter flight-hour, the survey cost of
distance-sampling estimates was about 7,000 C$ cheaper
than block-survey estimates in 2012. This does not include
cost ofpersonnel or stratification. But forexample, using the
average fixed-wing fiight-hour/lOOkm^ from 2002, 2007,
and2009 (0.424 hr/100 km^), stratification of the entire unit
353 (4,606 km^) required about 19.5 hours. Thus, at an
hourly fixed-wing rate of about 275C$, stratification added
approximately 5,400 C$/survey. Consequently, higher
efi&ciency of distance sampling (8,000 C$-1-5,400 C$
savings in unit 353) compared with the block-survey design
could allow population surveys to be conducted more
frequently. For distance sampling, large or small manage
ment units can be surveyed with the same effortgiven they
have the same moose density, because the absolute size ofthe
sample is important, rather than the fraction of the
population sampled (Buckland et al. 2001). In contrast,
block-survey effort to achieve density estimates witha certain
CV is dependent on stratification accuracy and precision,
variance among strata, size of strata, or moose density
(Gasaway et al. 1986).

MANAGEMENT IMPLICATIONS

In forested survey areas as in Alberta, moose abundance
estimates will be biased low without a rigorous sightability
estimate. This could lead to under-harvesting moose
populations, failing to detect real population changes, and
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failing to meetharvest potential. We also show that failing to
account for sightability <1 also overestimates precision in
addition to underestimating population size—^both undesir
able outcomes for moose managers. Most importantly, if we
accept that visibility bias remains without a ^0) < 1
correction and distance-sampling estimators are at least as
accurate as conventional methods, distance sampling was
always moreefficient than traditional block-survey methods.
Distance sampling will especially outperform traditional
block-survey designs in medium- to high-density moose
populations because precision of the estimatoris dependent
on moose encounter rates, not the proportion of the
population surveyed.
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