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Abstract. Abundance and density estimates are central to the field of ecology and are an important com-
ponent of wildlife management. While many methods exist to estimate abundance from individually iden-
tifiable animals, it is much more difficult to estimate abundance of unmarked animals. One step toward
noninvasive abundance estimation is the use of passive detectors such as remote cameras or acoustic
recording devices. However, existing methods for estimating abundance from cameras for unmarked ani-
mals are limited by variable detection probability and have not taken full advantage of the information in
camera trapping rate. We developed a time to event (TTE) model to estimate abundance from trapping
rate. This estimate requires independent estimates of animal movement, so we collapsed the sampling
occasions to create a space to event (STE) model that is not sensitive to movement rate. We further simpli-
fied the STE model into an instantaneous sampling (IS) estimator that applies fixed-area counts to cameras.
The STE and IS models utilize time-lapse photographs to eliminate the variability in detection probability
that comes with motion-sensor photographs. We evaluated the three methods with simulations and per-
formed a case study to estimate elk (Cervus canadensis) abundance from remote camera trap data in Idaho.
Simulations demonstrated that the TTE model is sensitive to movement rate, but the STE and IS methods
are unbiased regardless of movement. In our case study, elk abundance estimates were comparable to
those from a recent aerial survey in the area, demonstrating that these new methods allow biologists to
estimate abundance from unmarked populations without tracking individuals over time.
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INTRODUCTION

Knowledge of species’ abundance is integral to
managing and conserving populations (Williams
et al. 2002). Passive detectors, such as remote
cameras, are gaining popularity for estimating
abundance noninvasively (O’Connell et al. 2011).
However, most camera studies have applied cap-
ture–recapture models that require individually
identifiable animals (Karanth 1995, Burton et al.
2015). Many species have no natural markings to

allow individual identification, so animals must
be physically captured and marked, which can
be invasive, expensive, and logistically challeng-
ing (Chandler and Royle 2013). Promising mod-
els to estimate abundance of unmarked
individuals include N-mixture models (Royle
2004), the Spatial Count (SC) model (Chandler
and Royle 2013), the Random Encounter Model
(REM) (Rowcliffe et al. 2008), and a distance
sampling (DS) model (Howe et al. 2017). How-
ever, the parameters of N-mixture models can be
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non-identifiable without auxiliary data (Barker
et al. 2017) and estimates can be biased high if
animals are detected at multiple cameras (Keever
et al. 2017) or if detection probability is <0.5
(D�enes et al. 2015). The SC model produces
imprecise estimates even under ideal circum-
stances unless it is supplemented with auxiliary
data (Chandler and Royle 2013, Sollmann et al.
2013). The REM is recognized as a promising
model, but its broad applicability is still being
tested (Rovero and Marshall 2009, Manzo et al.
2012, Zero et al. 2013, Cusack et al. 2015,
Balestrieri et al. 2016, Caravaggi et al. 2016).
Likewise, the DS model remains to be tested in
various field situations (Howe et al. 2017).

One of the challenges for estimating abun-
dance using cameras that several of these meth-
ods try to address is variable detection by
motion sensors. Motion-sensor sensitivity can
change with the animal’s size, distance, and
angle of approach, as well as environmental vari-
ables such as ambient temperature and obstruc-
tive vegetation (Rowcliffe et al. 2011, Burton
et al. 2015). If variable detection is ignored, the
area in front of the camera can be hard to calcu-
late, which can bias abundance estimates from
models that depend on it, like the REM. A fact
that seems to be largely ignored is that most
remote cameras are capable of taking pho-
tographs at regular intervals. Methods that take
advantage of time-lapse photographs can be
advantageous because they do not need explic-
itly to model motion-sensor variability. We devel-
oped two such methods that use time-lapse
photographs in order to decrease uncertainty in
detection. While time-lapse photographs may
not be suitable for rare species that are difficult
to capture on camera, they can be ideal for more
common species that are of conservation or man-
agement concern.

Another source of information from cameras
that has been largely overlooked is the timing of
detections (Bischof et al. 2014). Time to event
(TTE) models are a natural fit for cameras
because they record events continuously. Time-
to-event, or survival, models are used in fields as
diverse as industry, medicine, and ecology
(Muenchow 1986). In ecology, they can be used
to estimate survival of animals (Cox and Oakes
1984), quantify predator–prey encounters (Whit-
tington et al. 2011), and determine survey effort

(Garrard et al. 2008). It has long been noted that
trapping rate increases as abundance increases
(Carbone 2001, Rowcliffe et al. 2008, Rovero and
Marshall 2009). While using trapping rate as an
index of abundance is controversial (Carbone
2001, 2002, Jennelle et al. 2002), it can be highly
useful if used as an estimator of abundance
(Rowcliffe et al. 2008).
To utilize time of detection data, we developed

a TTE model to estimate abundance from trap-
ping rate. Because trapping rate varies not only
with abundance, but also with animal movement
rates and variable detectability rate (Jennelle et al.
2002, Parsons et al. 2017), we propose ways to
take these into account. The resulting model
approaches the REM and has similar assumptions
and limitations. Like the REM, it requires inde-
pendent estimates of movement rate, which can
be difficult to attain without telemetry data (Brad-
shaw et al. 2007). To address the issue of move-
ment, we propose a novel take on the TTE
framework. By collapsing the sampling intervals
to an instant in time, we create a space to event
(STE) model whose abundance estimates are
unaffected by animal movement rate. This model
is based in the same theory but substitutes space
for time. The STE model utilizes time-lapse pho-
tographs, which eliminates the impact of variable
detection on estimates of density. We further sim-
plify this model into an instantaneous sampling
(IS) estimator that has more flexible assumptions
of animal distribution but requires accurate
counts of animals.
We demonstrated use of these three models

through simulation and estimation of wintering
elk (Cervus canadensis) abundance through cam-
eras. We believe these methods are highly appli-
cable to species such as elk that are relatively
common and are difficult or expensive to survey.
In the United States, many management agencies
seek to maximize elk harvest while maintaining
a healthy population; abundance estimates can
be crucial when setting harvest quotas. However,
elk are most commonly counted through aerial
surveys, and aviation accidents are the largest
threat to wildlife biologists’ safety (Sasse 2003).
Because the methods described here rely on ran-
dom camera placement and/or time-lapse pho-
tographs, they can be quite suitable for common
species that produce lots of pictures. In some
cases, these design requirements can help cut
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down the number of photographs that need to be
analyzed, increasing efficiency when estimating
abundance.

METHODS

Time to event model
At a randomly placed motion-triggered cam-

era, the time until the target species is detected is
a function of abundance, movement rate, and
detectability (Jennelle et al. 2002, Parsons et al.
2017). The TTE model uses this fact to estimate
abundance from observations of the time (start-
ing from any arbitrary moment) until an animal
is first detected. In this framework, we separate
the two components of the detection process:
availability and perception. Frequently, in cam-
era trap literature, these two processes are com-
bined so that detection is defined as the
probability of detecting an animal given it is in a
plot that is sampled by a camera (Burton et al.
2015). We do away with the idea of sampling an
entire plot with a camera and instead focus only
on the area within the camera’s viewshed. In this
way, we reduce the definition of detection proba-
bility to the probability that an animal is cap-
tured by a motion-triggered camera, given the
animal is in the camera’s viewshed. We begin by
formulating the TTE model assuming perfect
detection, and then, we present an extension to
account for variable detectability.

We begin with a photograph stream from a
single camera, which we divide into multiple
sampling occasions (e.g., one day = one sam-
pling occasion). We then divide each sampling
occasion into consecutive sampling periods (e.g.,

24 one-hour periods; Fig. 1). We model the
number of animals Nijk in view at camera i = 1, 2,
. . ., M on occasion j = 1, 2, . . ., J and period k = 1,
2, . . ., K, as

Nijk �PoisðkÞ (1)

where k is the average number of animals in
view at a camera.
In a TTE framework, we are interested in esti-

mating k by observing T, the number of sampling
periods until the first animal encounters the cam-
era. For a single observation of TTE Tij at camera
i = 1, 2, . . ., M and sampling occasion j = 1, 2,
. . ., J, we record the first sampling period k = 1,
2, . . ., K in which we observe the species of inter-
est (Fig. 2). For example, at camera 1 on day 1, if
we first observe the species of interest in the third
sampling period, we record the TTE T11 = 3. If
we do not observe an animal by the end of the
Kth sampling period, the TTE must be longer
than our observation time, so we right-censor
this occasion (Muenchow 1986, Pyke and
Thompson 1986, Castro-Santos and Haro 2003,
Bischof et al. 2014). An example encounter his-
tory at camera 1 with J = 5 and K = 24 for each
sampling occasion may look like T1j = {NA, 23,
NA, NA, 5}, where a right-censored sampling
occasion is represented by NA.
In order to account for movement rate, we set

the length of the sampling period equal to the
average length of time it takes for an animal to
cross through the camera’s field of view. In field
settings, this requires an independent estimate of
movement rate. In our simulations and case
study, we use an approximation of the time it
takes animals to move through the camera and

Fig. 1. Schematic of sampling periods and occasions for the time to event model. At camera i = 1, 2, . . ., M,
sampling occasion j = 1, 2, . . ., J is broken into several sampling periods k = 1, 2, . . ., K. Here, J = 2 and K = 3.
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we encourage future work to tease apart the exact
relationship between movement rate and camera
size. After accounting for movement in this way,
and assuming perfect detection, the observed TTE
(measured by the number of sampling periods
until an animal is detected) is based only on abun-
dance. Since TTE is based only on abundance, we
can estimate k using the relationship between the
Poisson and exponential distributions. When an
event of interest is Poisson-distributed, the inter-
val between events is an exponential random vari-
able (Berkson 1975, Hutchinson and Waser 2007,
de Smith 2015). Therefore, the observed T follows
the exponential distribution

T�ExpðkÞ (2)

where k is equal to the parameter in Eq. 1. We
estimate k (the average number of animals in
a camera) from the exponential likelihood,
including right-censored data (indicated by
ð1� IðTij �KÞÞ) by integrating over the upper tail
of the probability density function. The full likeli-
hood for k given the encounter history Tij over
i = 1, 2, . . ., M cameras on j = 1, 2, . . ., J sampling
occasions with k = 1, 2, . . ., K sampling periods
per occasion is

L kjTij
� � ¼ YJ

j¼1

YM
i¼1

I Tij �Kð Þke�kTij

þð1� I Tij �Kð ÞÞe�kTij

0
@

1
A (3)

giving us k̂, the average number of animals in
the camera’s viewshed. We can estimate overall

density (D̂) by dividing by the mean area of a
camera’s viewshed �a:

D̂ ¼ k̂
�a

(4)

Mean camera area �a is calculated as �a ¼
1=M

PM
i¼1 ai. The viewable area ai for each camera

is the circular sector defined by the lens angle (hi)
in degrees and the trigger distance (ri), following

ai ¼ pr2i
hi
360

(5)

We can convert density to total abundance N by
multiplying by the area of the sampling frame A

N̂ ¼ D̂A (6)

We estimate the sampling variance of N̂ using
the properties of maximum likelihood theory and
the delta method (Mood et al. 1974, Oehlert 1992,
Williams et al. 2002). R code for implementing the
TTE model is given in Data S1 and Appendix S1.
Because the TTE method uses replicates in

both space and time, we can model heteroge-
neous density by adding a linear model to ki, the
average density at camera i, in the general form

logðkiÞ ¼ b0 þ b1x1i þ b2x2i (7)

where xi are a site-specific covariates. When mod-
eling heterogeneous density, we must constrain
the number of sampling periods per sampling
occasion so that each observed TTE arises from
the abundance in the area immediately around

Fig. 2. Conceptual diagram of the time to event (TTE) model. The circular sector is the viewshed of a single
camera i on a single occasion j divided into three successive sampling periods (a–c). The black dots represent ran-
domly placed animals. The observed TTE Tij is equal to the period k in which the camera first contains an animal.
There are no animals in the camera in (a) k = 1 or (b) k = 2, but there is an animal in the camera in (c) k = 3, so for
this camera and sampling occasion, Tij = 3.
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each camera. The longer we sample, the larger the
effective sampling area becomes; animals farther
and farther away from the camera are added to
the population at risk of capture. Therefore, we
must keep the number of sampling periods small
(e.g., K = 3) to meet this assumption.

To account for imperfect detection at the camera
level for the TTE model, we suggest an extension
using the geometric and gamma distributions. A
camera with imperfect detection may miss an ani-
mal on its first z visits to a camera, but the camera
will capture it on the (z + 1)th visit. The sum of
exponential waiting times is gamma-distributed,
so the waiting time until the (z + 1)th visit is a
gamma-distributed random variable (Mood et al.
1974). The full likelihood of k uses observations of
Tij, the gamma-distributed TTE at camera i = 1, 2,
. . ., M on occasion j = 1, 2, . . ., J with k = 1, 2, . . .,
K sampling periods per occasion. It also uses z, a
geometric-distributed count of the number of
sampling periods missed. Right-censored occa-
sions are indicated by 1� IðTij �KÞ when there are
no observations by the end of the Kth sampling
period in sampling occasion j. The full likelihood
in the shape-rate formulation is

where Γ(z + 1) is the gamma function
Γ(z + 1) = z! and c(z + 1, kiTij) is the lower
incomplete gamma function c zþ 1; kiTij

� � ¼R kiTij

0 tze�tdt. Further development of the geomet-
ric-gamma formulation is needed because there is
a near singularity in the Hessian matrix. In this
paper, we demonstrate the TTE model formulated
under perfect detection only.

Space to event model
Because the TTE model requires estimates of

movement rate in order to set the sampling peri-
ods appropriately, we developed the STE model
that does not require this auxiliary information.
The STE model is conceptually similar to the TTE
model, but we collapse each sampling occasion to
an instantaneous sample. Because of this, the esti-
mates are independent of animal movement rate.
As with the TTE model, we begin by modeling
the number of animals in view of a camera using

the Poisson distribution (1). However, instead of
observing the time until we observe an animal
using the exponential distribution, we can instead
collect data on the amount of space S between
animals. As with the TTE model, when events of
interest are Poisson-distributed, the interval (of
space in this case) between them is exponentially
distributed S ~ Exp(k) (de Smith 2015).
In order to estimate the amount of space

between animals, we take observations of ran-
dom areas of the landscape at an instant in time.
If an observer were to repeatedly draw random
areas of the landscape until they found an ani-
mal, the so-called STE would be the total area
sampled until that point. Because the sample is
instantaneous, the mean STE E[S] = 1/k depends
only on the number of animals, so we can esti-
mate density without any further constraints.
When using time-lapse photographs, detection
probability is defined as the probability that an
animal is captured and correctly identified given
it is in the camera’s viewshed. As with the
TTE model, we develop this model assuming
perfect detection, which we address further in
the discussion.

To observe S in practice, we randomly deploy
time-lapse cameras that take photographs at pre-
defined times. As opposed to the TTE model,
where we split sampling occasions into sampling
periods, we now define sampling occasions as a
single instant in time. At each sampling occasion
j = 1, 2, . . ., J (e.g., every 1 h), we observe a snap-
shot of the number of animals in view of each
camera. We record the STE as the total area sam-
pled before an animal is first observed.
As an example, we examine all the photographs

taken at a single time (j = 1). We first calculate the
area of each camera following Eq. 5. Since we are
using time-lapse cameras instead of motion-sensor
cameras, the maximum distance r is defined by
field landmarks rather than the trigger distance.
After randomly ordering the cameras, we look
through the photographs until we find the first ani-
mal detection. If camera 1 (with area a1) contains at
least one animal, we record the space to first event

L kjTij
� � ¼ YJ

j¼1

YM
i¼1

X1
z¼0

I Tij �Kð Þp 1� pð Þz kzþ1
i

C zþ1ð ÞT
z
ije

�kiTij

þð1� I Tij �Kð ÞÞp 1� pð Þz 1� 1
C zþ1ð Þ c zþ 1; kiTij

� �� �
0
B@

1
CA (8)
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Sj=1 = a1. If, instead, camera 1 is empty but camera
n contains at least one animal, we record
Sj=1 = a1 + a2 +. . . + an (Fig. 3). An example
encounter history with J = 5 with average camera
area �a ¼ 30m2 may look like Sj = {180 m2, 30 m2,
NA, 300 m2, NA}, where a right-censored sam-
pling occasion is represented asNA.

Once we have observed our encounter history
Sj for j = 1, 2, . . ., J sampling occasions over i = 1,
2, . . ., M cameras, we estimate k with the expo-
nential likelihood, following the TTE model with
one fewer dimension

L kjSj
� � ¼ YJ

j¼1

I Sj �Mð Þke�kSj þ 1� I Sj �Mð Þ
� �

e�kSj
� �

(9)

where ISJ �M indicates that an animal was seen in
at least one camera. Because the STE model looks
at events in space, censored occasions occur
when no animals were observed in the M cam-
eras. Because we have already factored in the
camera area, k now represents density. To extrap-
olate to abundance, we multiply by the sampling
frame area, as in Eq. 6. We calculate the variance
of N̂ using the estimated information matrix and
the delta method (Mood et al. 1974, Oehlert
1992, Williams et al. 2002).

Instantaneous sampling estimator
If we count the animals in view at each pho-

tograph taken for the STE model, we essentially
have a fixed-area count repeated in space and
time. The IS estimator uses counts of animals
from randomly deployed time-lapse cameras.
Over many spatial and temporal replicates, the
mean count nij at location i = 1, 2, . . .,M and occa-
sion j = 1, 2, . . ., J is an estimate of density (D̂)
when divided by the cameras’ viewable area (aij),
following

D̂ ¼ 1
J
� 1
M

XJ

j¼1

XM
i¼1

nij
aij

(10)

We can convert to abundance following Eq. 6.
Because fixed-area point counts are special

cases of fixed-area transects, we estimated vari-
ance of the parameter D̂ based on the formula for
random line transects of unequal lengths
(Thompson 2002, Fewster et al. 2009), following:

dVarðD̂Þ ¼ M
L2ðM� 1Þ

XM
i¼1

ðJ � aiÞ2 ni
J � ai �

n
L

� �2

(11)

where Jai is the summed area of camera i across
all occasions, L ¼ PM

i¼1 J � ai, count ni is the count
of animals over all occasions at camera i, and n is

Fig. 3. Conceptual diagram of the space to event (STE) model. The circular sectors represent three different
cameras on two different occasions (a–b). On each occasion j = 1, 2, . . ., J, we randomly order the cameras i = 1,
2, . . ., M. If the first animal detection is in the nth camera, the observed STE Sj is the sum of the areas of cameras
1, 2, . . . n. (a) On occasion j = 1, camera 1 contains at least one animal, so we record the space to first event
Sj=1 = a1. (b) On occasion j = 2, cameras 2 and 3 both contain animals, but we use the first camera in the series.
Therefore, we record the space to first event Sj=1 = a1 + a2.
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the total count of animals over all cameras and
occasions. We then estimated the variance of N̂
using the delta method.

Assumptions
All three abundance estimators assume demo-

graphic and geographic closure of the study area,
random camera placement, and independent
observations of animals. To meet the closure
assumptions, an appropriate sampling frame and
time should be chosen during which the popula-
tion is closed to birth, death, immigration, and
emigration. While the models assume demo-
graphic and geographic closure on the level of the
sampling frame, it is important to note that they
do not assume geographic closure at the plot
level, as N-mixture models do (Royle 2004). Sec-
ond, cameras should be deployed randomly
across the landscape rather than targeting features
such as roads or trails (Rowcliffe et al. 2013). Ani-
mals should be neither attracted to nor repelled
by the cameras, so sites should be unbaited and
minimally disturbed. Next, detections of animals
are assumed to be independent in space and time.
As long as cameras are randomly deployed, the
properties of random sampling mean that animals
captured at one camera are not any more or less
likely to step in front of the next camera. How-
ever, it is slightly more difficult to address inde-
pendence of animal detections at a single camera.
We should consider animal behavior when defin-
ing sampling occasions and leave enough time for
animals to redistribute across the landscape. We
can help address independence of detections by
selecting sampling occasions randomly or system-
atically, but we still may see autocorrelation
across observations. In these cases, bootstrapping
may help to appropriately estimate the variance.

The TTE and STE models assume that animals
follow a Poisson distribution at the spatial scale
of the camera. If animals are clumped due to
landscape features, we could incorporate covari-
ates on k to help address extra variance on the
landscape. Additionally, the TTE model requires
an independent estimate of the average amount
of time for an animal to move through the cam-
era area. These estimates can be obtained
through auxiliary data like global positioning
system (GPS) collars.

All models are currently formulated under the
assumption that detection probability is 1. When

using time-lapse photographs, as in the STE and
IS methods, this may be fairly reasonable. The
cameras take photographs at specified intervals
regardless of whether they detect an animal. As
long as the view in front of the camera is appro-
priately clear and photograph viewers are consis-
tently trained, the photographs reflect a true
capture history of animal presence and absence.
On the other hand, motion-sensor cameras pose a
larger issue for detection. Because detection prob-
ability decreases with distance (Rowcliffe et al.
2011, Howe et al. 2017), the user may want to use
only those photographs with animals a short dis-
tance from the camera so they can assume perfect
detection probability. We encourage future work
into extending these models when P < 1.

Simulations
We performed mechanistic simulations to eval-

uate the estimates of abundance and the vari-
ances of those estimates for all three models. We
simulated slow and fast movement rates for pop-
ulations of 10 animals and 100 animals. Every
individual took an independent uncorrelated
random walk for 1000 steps with fixed step
lengths (length 1 for the slow population and
length 3 for the fast population) and random
turning angles, bounded within a 30 9 30 unit
area. Animals were captured at a given time in
any of the 10 randomly placed 1 9 1 unit square
cameras if their coordinates fell within the cam-
era’s coordinates, inclusive of two borders.
For the IS and STE methods, we created

encounter histories based on the number of ani-
mals in each camera at every tenth time step. For
the IS method, we used the count of animals in
the cameras at each sampled time. For the STE
method, we created a randomly ordered list of
the cameras at each sampled time step and
recorded the number of the first camera that con-
tained at least one animal during that time. For
the TTE model, we sampled animals during 10-
step sampling occasions (each step represented a
sampling period in the sampling occasion). We
left 10 steps between the end of one sampling
occasion and the beginning of the next. At each
camera and sampling occasion, we recorded the
number of steps until the first animal was caught
in the camera.
We ran 1000 simulations for each combination

of step lengths (fast and slow) and population
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size (10 and 100). We calculated standard error
on each estimate using the analytical standard
error formulas and delta method. To verify our
estimates of standard error, we also calculated
the standard deviation of the abundance esti-
mates from the repeated simulations.

Case study: estimating elk abundance
To demonstrate use of these methods in the

field, we used a dataset from 80 remote cameras
deployed during February 2016. We deployed
these cameras in the Beaverhead Mountains of
Idaho on a mix of public and private land, with
permission from the landowners. The study area
was defined by a 2 km buffer around 3525 GPS
locations from 18 December 2014 to 20 March 2015
from 33 calf and female elk. This area was charac-
terized by high desert grass–sagebrush communi-
ties and windswept hills, where elk movement
was mostly unrestrained by topography or dense
vegetation. We compared estimates from our mod-
els against abundance estimates from a February
2009 aerial survey that was conducted in this area
and corrected for sightability bias (Samuel et al.
1987, 1992). We recognize that this is not true
abundance, but it serves as a ballpark figure
against which to compare our estimates.

Within the sampling frame, we randomly
selected nine plots using generalized random-
tessellation stratified (GRTS) sampling (Stevens
and Olsen 2004) with the R package spsurvey
(Kincaid and Olsen 2017, R Core Team 2015).
Generalized random-tessellation stratified sam-
pling allows the user to replace plots in the
ordered sample, so we replaced two plots due to
lack of accessibility during winter and/or lack of
landowner approval (Stevens and Olsen 2004).
We divided each 1.5 9 1.5 km plot into nine
equal sections and systematically placed one cam-
era in each section. Within the bounds of the
500 9 500 m sub-plot, we attempted to place the
camera to maximize capture of elk. However, in
this study area, a 500 9 500 m sub-plot is rela-
tively homogeneous, and field observations sug-
gested that elk movement was fairly unrestrained
at this scale. Thus, while subjective placement at
the sub-plot level does not adhere to perfect ran-
dom sampling, we do not believe we violated the
assumption severely. When placing cameras, we
made sure that no two cameras were on the same
road, trail, or ridge, in order to reduce

autocorrelation across cameras. Due to lack of
trees, we placed the cameras on T-posts at an
approximate height of 4–5 feet. We pointed cam-
eras north to limit direct sunlight in the frame and
cleared any vegetation obstructing the camera’s
view. The infrared flash, motion-triggered cam-
eras (models HC600, PC800, and PC900; Reconyx,
Holmen, Wisconsin, USA) had high trigger sensi-
tivity and took bursts of five pictures with no
delay between trigger activations. In addition to
the motion trigger, cameras took pictures every
five minutes from 06:00 to 18:00.
We calculated the visible camera area by cam-

era specifications (TrailcamPro 2017) using Eq. 5.
We based visible camera area on the Reconyx
HC600 model, letting h = 42°. The cameras had
long, unimpeded views, so we set r = 50 m to
reduce misclassification and miscounting. We
only counted elk within that distance, which we
identified by flagging placed in the field.
For the TTE model, we estimated the sampling

period length as 1 h. We estimated the distance
across a camera as 30 m and calculated elk speed
from 1746 locations from 53 GPS collars in the
Beaverhead area from January 2015 (IDFG,
unpublished data). Median elk speed was approxi-
mately 30 m/h (including times of foraging and
rest), so we set the sampling period length to one
hour. At each camera, we sampled for four hours
(four 1-h sampling periods), beginning every
eight hours throughout February 2016. On each
sampling occasion, we recorded the first period
in which an elk was detected. If no elk were
detected during a given sampling occasion, we
right-censored that occasion.
For the STE model, we created a randomly

ordered list of cameras and recorded the first
camera that detected elk at each sampling occa-
sion. Although the sampling should be instanta-
neous, we defined the sampling period as 1 min
to ensure we had enough detections. Any pho-
tographs of elk during that one minute counted
as a detection. We sampled each camera for one
minute every hour, from 1 February to 13 Febru-
ary 2016. We selected this time frame to ensure
that elk were not migrating on or off winter
range. If no cameras observed elk at a given sam-
pling occasion, we right-censored that occasion.
For the IS estimator, we counted all visible elk

in a subset of photographs taken between 1
February and 29 February 2016. We used
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photographs taken on the hour, every hour, so as
to reduce autocorrelation between samples. If no
photograph was taken on a given occasion, we
recorded the count as zero. Ideally, when using
repeated fixed-area counts, the spatial replicates
should be re-randomized each time. However,
with the IS estimator, cameras are not redeployed
at each sampling occasion j, so the variance esti-
mator should account for potential correlation
among counts at the same camera. Because most
analytic variance estimators can be biased low
when samples are correlated, we wanted to test
the performance of our estimator against the esti-
mate of standard error from a non-parametric
bootstrap (Efron and Tibshirani 1993). We created
1000 new datasets by sampling the cameras with
replacement and taking all counts at those
cameras. We estimated abundance with each
dataset. We estimated the standard error of N̂
with the standard deviation of these repeated
estimates.

RESULTS

Simulations
We tested the three methods on two popula-

tions moving at different speeds in populations
of two sizes to determine whether movement
rate or density influenced abundance estimates
(Fig. 4). Simulation results are summarized in
Table 1. The TTE model appeared to underesti-
mate abundance for all simulated populations. In
both high and low densities, coverage of the
TTE’s 95% confidence intervals was higher for
the faster population than the slow population.
This demonstrated that the TTE model is sensi-
tive to movement rate. On the other hand, cover-
age was approximately equal for the STE and IS
models in all simulations. This signaled that the
IS and STE models appear to be unbiased regard-
less of movement rate or population density.
The delta method appeared to underestimate

variance for the TTE model, which contributed to

Fig. 4. Abundance estimates from simulated populations. We performed 1000 simulations for each of the three
models at two step lengths for populations of size 10 (left column) and 100 (right column). Simulated animals
took an uncorrelated random walk with step length 1 for the slow populations (top row) and step length 3 for
the fast populations (bottom row).
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the poor coverage of the 95% confidence inter-
vals. In contrast, the analytic standard error and
the standard deviation of the abundance esti-
mates were similar for the STE and IS methods.
The analytic standard error for these two meth-
ods was always slightly lower than the standard
deviation of the abundance estimates. This is
likely a feature of our particular dataset, but it
may warrant further investigation whether the
delta method systematically underestimates vari-
ance in these models. A Bayesian implementa-
tion of the STE model is straightforward and
would eliminate the need for a delta method
approximation. Interestingly, the variance and
coverage were similar between the IS method
and STE model for all combinations of step
length and true abundance.

Case study
To evaluate the methods in a real-world set-

ting, we applied them to camera data to esti-
mate elk abundance. Because we applied these
models to elk, which are viewed as a social
animal, we first checked the assumption that
animals move independently. The elk in our
camera traps mainly appeared in groups of one
or two, so we believe this assumption was rea-
sonably well met (Fig. 5). For the TTE model,

we recorded 101 elk detections over 80 cameras
and 84 sampling occasions and estimated 2217
(standard error [SE] 211.6) elk (Fig. 6). For the
STE model, we detected elk on 58 of the 288
sampling occasions and estimated abundance as
1718 (SE 225.6). Using the IS method, we
observed elk in 60 of the 696 sampling occasions
at the 80 cameras and we estimated 1613 elk.
The standard error from the analytic estimator
for the IS method was 530, and the standard
error from the non-parametric bootstrap was
531. These abundance estimates were compara-
ble to the 2009 aerial survey estimate of 2272 elk
(IDFG, unpublished data). This aerial survey had
no calculable standard error and only served as
a rough estimate against which to compare our
results.

DISCUSSION

We derived the TTE model under a TTE frame-
work to estimate abundance from the first animal
detection at a given camera and sampling occa-
sion. The model is functionally similar to the
REM and has most of the same advantages and
disadvantages. Most notably, both models
require independent estimates of movement. The
difference in confidence interval coverage
between our fast and slow simulations demon-
strated that the TTE model is sensitive to differ-
ent movement speeds. This result prompted us
to extend the TTE framework to develop the STE
model. By collapsing the sampling occasions, the
instantaneous nature of the STE makes it insensi-
tive to movement. We further extended this idea

Table 1. Abundance estimates and their standard
errors from simulations for the three methods.

Method N Step N̂
Analytic
SE(N̂) SD(N̂)

Coverage
(95% CI)

TTE 10 1 7.64 1.19 1.66 0.489
3 9.71 1.35 1.6 0.881

100 1 75.8 4.49 6.43 0.02
3 91.2 5.06 9.66 0.524

STE 10 1 10.2 3.07 3.42 0.908
3 10.6 3.13 3.39 0.913

100 1 98.7 11.9 12.2 0.936
3 99.1 11.9 14.2 0.899

IS 10 1 10.5 3.02 3.45 0.893
3 10.6 3.05 3.21 0.931

100 1 104 9.63 11.3 0.906
3 104 9.65 13.3 0.843

Notes: IS, instantaneous sampling; STE, space to event;
TTE, time to event; N: true abundance; Step: simulated step
length; N̂: mean estimated abundance; Analytic SE(N̂): analytic
standard error using the delta method; SD(N̂): standard devia-
tion of the abundance estimates from the 1000 simulations. We
calculated 95% confidence intervals as N̂ � 1.96�Analytical SE
(N̂). Coverage is the proportion of 95% confidence intervals
that overlapped true abundance.

Fig. 5. Histogram of elk group size in the study
area. We used photographs collected from February 1
to 13 and defined an elk group as the individuals in a
burst of photographs separated from any other pho-
tographs of elk by at least 120 min. We counted every
individual entering the frame as a new individual.
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to develop the IS estimator, which uses animal
counts at each camera rather than the amount of
area sampled. This is a novel application of
fixed-area counts to cameras. By eliminating the
Poisson assumption of the STE, this method
gains flexibility but also requires accurate counts
of animals in field settings. The assumptions and
advantages of the three methods make them
appropriate for different situations.

A major advantage of the IS and STE methods
is the ability to eliminate variation in detection
probability at cameras. They utilize time-lapse
photographs, a form of camera data that have
been largely overlooked. With motion-sensor
cameras, a photograph of an animal at a certain
time indicates that an animal was present. How-
ever, no photographs at that time mean either
that no animals were present or that animals
were present and not detected. Time-lapse pho-
tographs provide a complete log of animal pres-
ence and absence, so there is no need to model

uncertainty in detection arising from equipment
settings, environmental conditions, animal body
size and distance, etc. Because the camera’s
detection zone is constant, we can easily define
the area as the field of view. This is flexible
enough to allow areas that vary across cameras
within a study. Time-lapse photographs can be
quite effective on relatively common species that
are frequently detected, such as elk or deer.
The TTE model has the interesting advantage

over any existing method in that it reduces the
number of motion-sensor photographs required
for analysis. The information at each camera and
sampling occasion is contained in the time until
the first animal detection, so the viewer can stop
looking through pictures after the first detection.
Currently, tens of thousands of remote cameras
are deployed around the world, which produce
millions of pictures (Steenweg 2017). Until pho-
tograph classification can be fully automated,
large-scale camera trap studies are limited by the

Fig. 6. Abundance estimates from all methods. Instantaneous sampling (IS), space to event (STE), and time-to-
event (TTE) estimates of elk abundance are shown with their 95% confidence intervals, along with the 2009 aerial
survey estimate (2272, standard error [SE] not calculable). The IS method estimated 1613 (SE 530), the STE model
estimated 1718 elk (SE 225.6), and the TTE model estimated 2217 elk (SE 211.6).
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hours required to classify millions of pictures.
The TTE presents a unique way to decrease the
workload and allowing quicker turnaround for
abundance estimates.

One benefit of the STE and TTE models that
should not be overlooked is that they allow us to
estimate abundance without counting the num-
ber of animals in each photograph. Counts of
animals in a photograph can provide some infor-
mation about abundance, but they come with a
cost of additional assumptions. Many species or
conditions make it difficult to accurately count
the number of animals, and group counts from
photographs can be influenced by observer

experience and photograph quality (Folsom
2017). For instance, behavior like rubbing against
cameras can make it difficult to accurately count
the number of animals in a given snapshot
(Fig. 7). If we were to use counts in the STE
model, we would see parallels between it, the IS
estimator, and Poisson regression. However,
since the STE was derived from hazard theory,
we do not need to use these counts. Estimating
abundance from the amount of space sampled
before a species is detected is a novel application
of TTE modeling.
There is great utility in the design-based infer-

ence underpinning the sampling for these models.

Fig. 7. Factors that influence accurate group counts. Various factors can influence accurate counts of group
size, including animal behavior (a, b), photograph quality (c), and weather (d). Although it may be difficult to
accurately count group size in these four photographs, the species is still identifiable. In studies where group
counts are consistently difficult but species identification is possible, the space to event model is a useful tool to
estimate abundance.
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First, it allows us to easily extrapolate abundance
from density. The area of interest is defined by the
sampling frame, so there is no need to do post
hoc estimates of sampling area, as have been criti-
cized in many non-spatial capture–recapture
studies (O’Brien 2011). Furthermore, the random-
ized design is useful for making inference to large
areas. The models’ power comes from the number
of cameras deployed rather than the proportion of
the landscape covered. Therefore, sampling can
be performed at the scale of biological popula-
tions of large animals without requiring cameras
in the home ranges of all animals. As with using
time-lapse photographs, randomly placed cam-
eras may be more useful for common species than
for very rare or elusive animals. If it is difficult to
collect enough data with randomly placed cam-
eras, one may be able to apply a model-based
design that applies prior knowledge of the spe-
cies’movement or distribution instead.

The STE and TTE models assume that animals
are distributed following a Poisson distribution
at the camera level. For elk on a small spatial and
temporal scale, this is a relatively realistic
approximation of movement, but it may not
apply to all species. It is worth noting that the
REM and SC models make explicit assumptions
about animal movement as well (Rowcliffe et al.
2008, Royle et al. 2014). Further simulations
would be useful in determining how robust these
methods are to violations of this assumption,
especially by social or territorial species.

Our case studies used data from cameras that
were deployed before these methods were fully
developed. As such, the sampling design was not
ideal, but we believe the estimates are reason-
able. In future implementation, cameras should
be deployed randomly rather than within a
nested design. The nature of our camera array
may have introduced autocorrelation between
cameras in a cluster. However, we made efforts
to distribute cameras within a plot so that no two
were on the same road, trail, or ridge. We there-
fore believe the effect of autocorrelation was
likely small. We recommend that future studies
place cameras completely randomly, rather than
by the combination of random, systematic, and
subjective placement that we used. As noted ear-
lier, we believe that elk movement was not
greatly affected at the sub-cell scale because the
sub-cells were quite homogeneous. However,

studies in more heterogeneous areas should
select sites randomly or systematically to avoid
biasing estimates. Next, our cameras only took
time-lapse photographs during daylight hours.
We had to assume that if no motion-sensor pho-
tograph was taken, no elk were present. The
most accurate way to decrease uncertainty in
detection would be to take time-lapse pho-
tographs during the entire 24-h period. Many
remote cameras can take both motion-triggered
and time-lapse photographs, so this would not
preclude collecting motion-triggered pho-
tographs for the TTE model or other uses. Finally,
we were only interested in using prior aerial sur-
veys as rough tests of the practicality and accu-
racy of these methods. We suggest a follow-up
study that applies these methods in an area with
a known abundance.
The TTE, STE, and IS methods represent a

novel approach for estimating abundance of
unmarked animals. They reframe the way we
approach continuous, remotely collected data
and mark a promising step toward completely
noninvasive population monitoring. By using
TTE modeling and time-lapse photographs, these
models capture information that has largely been
overlooked by previous camera trap methods.
All three methods have broad applicability
across many species with no natural identifying
characteristics. Furthermore, they should be gen-
eralizable to any continuous-time remote trap
whose detection area is calculable, such as acous-
tic detectors (Dawson and Efford 2009). While all
the models have distinct advantages that make
them appropriate for certain situations, we found
that the STE model had the best precision in our
field trial without the need for estimates of
movement rate or group size counts.
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