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Abstract

Novel approaches to quantifying density and distributions could help biolo-

gists adaptively manage wildlife populations, particularly if methods are accu-

rate, consistent, cost-effective, rapid, and sensitive to change. Such approaches

may also improve research on interactions between density and processes of

interest, such as disease transmission across multiple populations. We assess

how satellite imagery, unmanned aerial system (UAS) imagery, and Global

Positioning System (GPS) collar data vary in characterizing elk density, distri-

bution, and count patterns across times with and without supplemental feed-

ing at the National Elk Refuge (NER) in the US state of Wyoming. We also

present the first comparison of satellite imagery data with traditional counts

for ungulates in a temperate system. We further evaluate seven different aggre-

gation metrics to identify the most consistent and sensitive metrics for compar-

ing density and distribution across time and populations. All three data

sources detected higher densities and aggregation locations of elk during sup-

plemental feeding than non-feeding at the NER. Kernel density estimates

(KDEs), KDE polygon areas, and the first quantile of interelk distances

detected differences with the highest sensitivity and were most highly corre-

lated across data sources. Both UAS and satellite imagery provide snapshots of

density and distribution patterns of most animals in the area at lower cost than

GPS collars. While satellite-based counts were lower than traditional counts,

aggregation metrics matched those from UAS and GPS data sources when ani-

mals appeared in high contrast to the landscape, including brown elk against

new snow in open areas. UAS counts of elk were similar to traditional ground-

based counts on feed grounds and are the best data source for assessing

changes in small spatial extents. Satellite, UAS, or GPS data can provide appro-

priate data for assessing density and changes in density from adaptive manage-

ment actions. For the NER, where high elk densities are beneath controlled

Tabitha A. Graves and Michael J. Yarnall are co-lead authors.

Received: 31 March 2021 Revised: 1 October 2021 Accepted: 13 October 2021

DOI: 10.1002/eap.2600

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America. This article has been contributed to by

US Government employees and their work is in the public domain in the USA.

Ecological Applications. 2022;32:e2600. https://onlinelibrary.wiley.com/r/eap 1 of 16
https://doi.org/10.1002/eap.2600

https://orcid.org/0000-0001-5145-2400
https://orcid.org/0000-0003-1753-7931
https://orcid.org/0000-0003-4659-0504
https://orcid.org/0000-0002-8812-9233
https://orcid.org/0000-0003-3883-5153
https://orcid.org/0000-0002-2229-5853
https://orcid.org/0000-0003-3978-1775
https://orcid.org/0000-0001-8045-5213
mailto:tgraves@usgs.gov
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/eap
https://doi.org/10.1002/eap.2600
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feap.2600&domain=pdf&date_stamp=2022-05-09


airspace, GPS collar data will be most useful for evaluating how management

actions, including changes in the dates of supplemental feeding, influence elk

density and aggregation across large spatial extents. Using consistent and sen-

sitive measures of density may improve research on the drivers and effects of

density within and across a wide range of species.

KEYWORD S
adaptive management, animal aggregation, cervids, chronic wasting disease, contact rates,
disease ecology, drone, elk, harvest, imagery, supplemental feeding, winter range

INTRODUCTION

Wildlife managers need accurate, consistent, and, in some
cases, rapid measures of animal density, distribution, and
population size to adaptively manage populations. For
example, quantifying animal densities in space and time
could be used to evaluate whether habitat treatments
increase density for a species of conservation concern.
Alternatively, for species with disease threats, managers
would like density information to inform decisions related
to reducing large aggregations that can contribute to high
disease prevalence (Descamps et al., 2012; Lloyd-Smith
et al., 2005; McCallum et al., 2001; Miguel et al., 2020;
Rodríguez-Pastor et al., 2017; Venesky et al., 2011). How-
ever, measuring density poses significant challenges
because it changes continuously as animals move dynami-
cally across landscapes, making most measurements a
snapshot of the distribution for a given time period.
Approaches vary in their ability to record this vital infor-
mation, but the most commonly used approaches summa-
rize density across several weeks to a year. Methods range
in complexity and accuracy from indices using raw counts
to sophisticated dynamic models (Mills, 2013). Frequently,
costs constrain managers to implement basic ground or
aerial counts of animals, which, while usually standard-
ized, typically provide minimum counts on a single day
for a given area rather than accurate estimates that
account for the influence of conditions, observers, and visi-
bility on detection. Nonetheless, these counts, particularly
of ungulates, are sufficiently useful for management and
state agencies to expend substantial funds to collect these
local data to inform harvest strategies.

When more rigorous population estimates are
needed, line transect, double observer or repeat observa-
tion, and traditional capture–recapture statistical tech-
niques account for detection and estimate population
numbers but rarely characterize local spatial variation in
density (Borchers et al., 1998, Smyser et al., 2016). Spatial
capture–recapture approaches use similar data, also lead
to precise estimates, and consider a wide range of local
processes, including influences of environmental condi-
tions on habitat selection, density, and connectivity

(Royle, Chandler, Gazenski, et al., 2013; Royle, Chandler,
Sollmann, et al., 2013). However, these methods usually
reflect average density across long time periods (e.g., a
year) and do not yet explicitly measure fine-scale summa-
ries of interest to ecologists, such as local densities or the
number and size of groups (Kendall et al., 2019). Alterna-
tively, GPS collars sample animals across time
(e.g., Triguero-Ocaña et al., 2019), but little research has
evaluated how this subsampling compares with aggrega-
tion patterns of entire populations (Sequeira et al., 2019,
but see Tosa et al., 2015). Thus, when the goal is to char-
acterize density at fine spatiotemporal scales, we need
additional options that are consistent enough for compar-
isons that are useful for research and management. For
example, measurements of density across a season or
between years with the locations and timing of hunting
seasons could help managers assess options for reducing
maximum density (Dougherty et al., 2018; Janousek
et al., 2021). For such a purpose, as with the use of mini-
mum counts, approaches that measure densities at spe-
cific points in time concurrent with specific management
activities or stressors of interest could provide needed
information for a number of questions.

For many wildlife species, human activities alter the
timing and abundance of food resources, sometimes
increasing wildlife aggregations and potential disease
transmission (Becker & Hall, 2014; Janousek et al., 2021).
The U.S. Fish and Wildlife Service (USFWS) National Elk
Refuge (NER) provides supplemental feed to an average
of 7500 elk (Cervus canadensis) and 500 bison (Bison
bison) for several months each winter. Feed ground con-
centration of elk enhanced brucellosis transmission
(Cross et al., 2007) and could influence other density-
dependent or environmentally transmitted diseases.
When chronic wasting disease (CWD), a partially
density-dependent disease fatal to deer, elk, and moose,
reaches the NER, high elk densities will likely cause high
CWD prevalence and subsequent mortality (Galloway
et al., 2017). Owing in part to concern over disease trans-
mission, the NER is implementing a plan to reduce feed-
season length to reduce densities and potentially disease
transmission (USFWS & NPS, 2019). In addition,
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managers elsewhere are considering options to reduce
aggregations of multiple species to achieve various goals,
including decreased pressure on native vegetation in
protected areas and depredation of private hayfields.
Thus, identifying the best, most rapid, and most cost-
effective methods to evaluate how management changes
affect ungulate aggregation will be useful for a variety of
applications.

Advances in satellite imagery, unmanned aerial sys-
tem (UAS), and Global Positioning System (GPS) collars
have provided new opportunities for estimating animal
density (Wang et al., 2019). Enumeration of wildlife using
satellite data has proliferated as the spatial and temporal
resolution and availability of imagery has increased
(Anderson, 2018; Hollings et al., 2018; LaRue et al.,
2017). For example, Stapleton et al. (2014) found equiva-
lent detections of polar bears (Ursus maritimus) using
Worldview 2 satellite (0.5-m resolution) and traditional
aerial surveys. However, satellite imagery has not been
commonly used to identify ungulates (but see Yang
et al. [2014] and Duporge et al. [2020] on elephants) or in
temperate regions (Xue et al., 2017). Similarly, UAS data
sets allow for a remote assessment of locations and num-
bers of animals, offer higher resolution, and provide more
control over survey timing and conditions (Barasona
et al., 2014; Preston et al., 2021). GPS collar technology
has also improved, with longer battery life, higher fix
rates, and lower spatial error providing finer temporal
resolution (Kays et al., 2015).

Researchers in fields as varied as landscape ecology,
wildlife ecology, and economics have long recognized the
importance of density and developed two families of
aggregation metrics to characterize it: area based and dis-
tance based. Whereas density inherently depends on
area, aggregation can also be described as the relative
proximity of individuals, with metrics that do not use
area explicitly. For example, disease research evaluates
contact frequency and duration (e.g., Cross et al., 2013;
Tosa et al., 2017) based on interanimal distances (Kint
et al., 2003). Wildlife biologists, focused as much on
where animals are as the degree of aggregation, use ker-
nel density estimates (KDEs) to quantify and visualize
relative aggregation and consider underlying habitat
drivers (e.g., Coe et al., 2018; Johnson et al., 2013). An
ideal aggregation metric should be sensitive to density
differences, easily interpreted, and consistent across dif-
ferent data sources. These characteristics would enable
the detection of the effectiveness of management
changes, a description of those changes, and the use of
the metric to compare populations across data sources.

Here we provide an integrated assessment of seven
aggregation metrics calculated from three concurrently
collected data sources (satellite, UAS, and GPS) for their
use as an index of density. Specifically, we assess

combinations of data sets and metrics for their use in man-
agement decisions and research. We pose the following
questions: (1) Which aggregation metrics are most sensi-
tive to changes in aggregation? (2) Are aggregation metrics
calculated from different data sources robust enough for
comparison across multiple populations? (3) How consis-
tent are animal counts from satellite and UAS images with
traditional aerial and ground counts? and (4) Which com-
binations of data sets and metrics adequately identify
changes in aggregation across time periods relevant to
management actions? We consider how managers and
researchers might decide on an approach for measuring
aggregation and illustrate testing for differences in density
applied to supplemental feeding. We conclude by
suggesting best methods for the NER to measure effects of
management changes intended to reduce density and,
thus, potentially disease transmission risk.

METHODS

Study area

Our study area encompasses ~223 km2 and is defined by
a 2-km buffer around the NER near Jackson, Wyoming,
USA (Figure 1). The NER manages wintering elk under
the USFWS Bison and Elk Management Plan (USFWS &
NPS, 2007) in collaboration with the Wyoming Game
and Fish Department (WYGFD). The NER initiated a
supplemental feeding program in 1912 to mitigate the
effects of human land use and development on elk winter
range. Start and end dates for the feed season vary annu-
ally with snow and forage conditions, but feeding typi-
cally occurs daily around 9:00 AM from late January
through late March or early April. Managers feed elk in
the same four locations each year. The NER is mostly
grassland and open shrubland, including sagebrush, with
only 6% forested (National Land Cover Database, 2016).
The NER neighbors the Bridger-Teton National Forest,
the town of Jackson, and Grand Teton National Park,
which contains the Jackson Hole airport.

Data sources

We compared metrics of elk aggregation using three data
sources: satellite imagery, UAS imagery, and GPS collar
data. We collected data across a range of spatial and tem-
poral scales expected to have varying elk density, specifi-
cally targeting data collection to assess variation in
aggregation based on seasonal patterns and supplemental
feeding. We collected imagery pre-, post-, and during feed-
ing in 1 year, plus during dates typical of feeding in a rare
nonfeeding year (Appendix S1: Figures S1 and S2). To
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compare metrics across data sources, we quantified elk
aggregation at spatial extents matching the smallest extent
of the data source in the comparison. We also compared
traditional ground and aerial counts with satellite and
UAS counts; however, we could not calculate aggregation
metrics from these counts because they did not include
individual elk locations.

Satellite imagery

We digitized elk locations using five satellite images
obtained from DigitalGlobe (Westminster, Colorado,
USA; WorldView-2 satellite, ~0.5-m resolution; World-
View-3 satellite, ~0.3-m resolution) ordered to coincide
with UAS flights and two traditional counts (one per

F I GURE 1 National Elk Refuge in Wyoming, USA
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year) (Appendix S1: Table S1). We selected 5 images from
the 15 available images based on temporal matching with
other data sources, image quality, and resources available
to digitize elk in images (Appendix S1: Table S1). Two
observers digitized elk locations in pansharpened and
orthorectified images using ArcGIS 10.6 (Environmental
Systems Research Institute [ESRI]; Redlands, California,
USA)—one digitized elk in the 1 February 2019 image
and one digitized elk in all other images. Observers ini-
tially viewed images at scales of ~1:2500 to ~1:3500 to
identify potential elk and zoomed to scales up to ~1:600
for confirmation. To differentiate elk from other features
(rocks, shrubs, snow-free patches of ground), observers
considered size, color, and shadow of potential elk-like
objects. Additionally, observers consulted reference
images from other dates to avoid digitizing persistent fea-
tures across images.

UASimagery

We acquired images from 24 UAS flights conducted during
4 trips in 2018 and 2019 (Appendix S1: Table S1) using a
Solo UAS (3D Robotics, Berkeley, California, USA)
equipped with a digital camera (GR model, Ricoh Imaging
Co., Tokyo, Japan). We targeted elk herds based on road
accessibility for the UAS crew and controlled airspace
restrictions from the nearby airport. We built flight plans in
the field by triangulating elk aggregations with terrain fea-
tures visible from both the ground and within Google Satel-
lite images in Mission Planner 1.3.52. The UAS collected
still images every second along parallel transects offset by
66 m flying at 150 m altitude at 12 m/s. Respective forelap
and sidelap between successive images and transects were
91% and 66% with ground sample distance (image resolu-
tion) of 3.9 cm. We conducted most flights 1 h after sunrise,
at midday, and 1 h before sunset.

We processed UAS imagery in Agisoft Metashape
1.0.0.1 (Agisoft LLC, St. Petersburg, Russia) and digitized
elk locations in ArcGIS 10.6 (Graves et al., 2021). After
visually screening photographs for elk, we aligned and
georeferenced only those containing animals. The 91%
overlap in images helped us align photos with minimal
textural features in the snow-covered, relatively flat land-
scape; however, many photographs contained the same
animals. Therefore, we created final orthomosaics for
each flight from the minimum number of photographs to
produce a complete image. Thus, final orthomosaics
included fewer images containing larger scenes (approxi-
mately 194 � 129 m), which reduced double counting of
animals from movement between successive images.
Given the inability to place ground control targets, we
rubber-sheeted orthomosaics to National Agricultural

Imagery Program (1 m resolution) imagery before a sin-
gle observer digitized elk locations. Like the satellite
imagery, reference images from other UAS flights helped
distinguish elk from landscape features.

GPScollar and traditional count data

We examined elk location data from 2016 to 2019 for
73 adult female elk fitted with GPS collars on the NER
(Telonics TGW-4670-4, Telonics, Inc., Mesa, Arizona, USA).
Collars recorded GPS locations every 1.5 h, resulting in ≤16
daily fixes per elk. We excluded 5 elk with a mean daily fix
success rate <0.90, leaving 68 elk for analysis. GPS locations
represented a small subsample of the population compared
to locations derived from satellite imagery but provided
higher temporal resolution over a longer duration.

Biologists with WYGFD counted minimum elk num-
bers annually with a combination of ground-based sur-
veys and helicopter (Bell 47 Soloy) surveys. During aerial
classification, biologists photographed large elk herds
and counted elk from the photographs later to improve
accuracy. In addition, NER staff visually approximated
the number of elk in each feed ground (usually rounding
to the nearest 100 elk) each day that feeding occurred.
We determined that daily observations varied by up to
20% between concurrent observers.

Aggregation metrics

We considered seven aggregation metrics to quantify
how clustered elk were and compared the sensitivity of
metrics across data sources (Table 1): interelk distances,
nearest-neighbor distances, the cumulative nearest-
neighbor distribution, average neighbor distance versus
neighbor order, Ripley’s K, Lorenz curves, and KDE. The
first four metrics are all distance-based measures of
aggregation (Wilschut et al., 2015). We compared distri-
butions and summary statistics of aggregation metrics
across dates and data sources. We considered two sum-
mary statistics for cumulative nearest-neighbor distribu-
tion and Ripley’s K that describe deviation from complete
spatial randomness: the ratio of the area between the
expected and estimated curves to the total area under the
estimated curve and the ratio of the area under the esti-
mated curve to the area under the expected curve.

We calculated KDEs for each data source and spatial
extent to visualize and describe temporal changes in elk
density (Calenge, 2006). For each data source and spatial
extent, we used the mean bandwidth from the reference
method (Calenge, 2006; Gitzen et al., 2006) to estimate
KDEs to reduce the influence of bandwidth choice on
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area estimates across data sets. For satellite and UAS data,
we calculated a KDE for each date and flight, respectively.
For GPS collar data, after excluding one elk in 2017 and
2019 that wintered outside the study area, we calculated
seasonal individual-weighted KDEs from 1 January to
29 April and weekly KDEs centered on satellite dates.
From the KDEs we estimated 50%, 70%, and 90% utiliza-
tion polygons and calculated the corresponding area and
density of elk for each polygon.

Comparisons across data sources

We compared aggregation metrics for three pairs of data
sources: satellite–GPS, satellite–UAS, and UAS–GPS. We
considered two spatial extents—the full study area (satellite–
GPS) and the UAS extents (UAS–satellite, UAS–GPS). For
satellite–GPS and UAS–GPS comparisons, we selected each
elk’s GPS fix nearest in time to the satellite image (range:
18–43 min) or UAS flight midpoint (range: 1–42 min). For
some UAS flights, few GPS locations were within the spatial
extent of the UAS imagery. Therefore, we report only UAS–
GPS comparisons with at least 9 collared elk, equivalent to
36 pairwise comparisons. We used Pearson correlations to
assess how aggregation summary statistics compared across
data sources. To evaluate the sensitivity of metrics to

changes in aggregation, we calculated the coefficient of vari-
ation (CV) for summary statistics of each metric for each
data source. We assessed the distribution of the CVs across
metrics using a k-means cluster analysis to determine metric
sensitivity to changes in aggregation.

Traditional classification counts included locations for
elk groups outside feed grounds, and ground counts con-
sisted of total counts by feed ground. We grouped elk in sat-
ellite imagery by feed ground and compared the total
number of elk marked in satellite imagery to ground or heli-
copter counts. The time between satellite images and tradi-
tional counts ranged from zero to 2 days; although some elk
moved between counts, we considered this reasonable based
on available data and size of the survey area (~223 km2)
(Janousek et al., 2021). We conducted all analyses in the sta-
tistical computing environment R, version 3.5.3 (R Core
Team, 2019).

Evaluation of supplemental feeding on
aggregation

We quantified mean differences in density during fed ver-
sus unfed times using metrics sensitive to changes in elk
distribution (CV > 0.4). For satellite and GPS data, we
tested significant differences in aggregation for 4 days (two

TAB L E 1 Aggregation metrics used to characterize elk density and distribution on National Elk Refuge, Wyoming, USA

Metric Description Summary statistics References; R package

Interelk distance
distribution

Distribution of all unique pairwise
distances between elk

Minimum, first quartile, median,
maximum distances

Pebesma (2018); package sf

Nearest-neighbor distance
distribution

Distribution of distance from every
elk to closest neighbor

Minimum, first quartile median,
maximum distances

Dorman (2019); package
nngeo

Average neighbor distance Distance from elk to its nearest,
second nearest, …, farthest
neighbor, averaged across all elk
locations

Graphical display Dorman (2019); package
nngeo

Cumulative nearest-
neighbor distance
distribution

Probability of finding nearest
neighbor within specified
distance

Graphical display, area between
observed curve and curve
expected under complete spatial
randomness

Baddeley et al. (2015);
package spatstat

Ripley’s K Expected number of other elk
within a given distance of each
elk, scaled by intensity

Graphical display, area between
observed curve and curve
expected under complete spatial
randomness

Ripley (1977, 1988),
Baddeley et al. (2015);
package spatstat

Lorenz curve Cumulative percentage of elk within
given percentage of study area,
e.g., most used 5% of cells
contain 90% of all elk locations

Graphical display, Gini coefficient Lorenz (1905), Gini (1912,
1921), Hijmans (2019);
package raster

Kernel density estimates
(KDEs)

Localized density for overlapping
subsets of study area defined by
kernel

Graphical display, maximum
intensity of elk use, density of elk
within utilization polygons,
polygon area

Silverman (1986),
Worton (1989),
Calenge (2006); package
adehabitatHR
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fed, two unfed) with two-sample t-tests (α = 0.05). For UAS
data, we used a linear model with mixed effects from the R
package lme4 (Bates et al., 2015) to evaluate within-day
changes in aggregation using the log of density as the
response variable. We used only 2019 UAS flight data,
which targeted one elk group each day, providing 2 days of
replication for before, during, and after feeding. We
included random intercepts for each day to account for dif-
ferences in elk groups across days and allow analysis of
repeated measures. We combined pre- and postfeeding as
unfed because aggregation was similar during these times.
We tested the significance of time of day and effect of feed-
ing with Type II Wald F-tests with the Kenward–Roger esti-
mate for degrees of freedom (Kenward & Roger, 1997) in
the R package car (Fox & Weisberg, 2011) and reported dif-
ferences in factor levels from Wald z-tests.

RESULTS

Aggregation metrics compared across data
sources

Correlations of summary statistics for matching spatial
and temporal extents across satellite, UAS, and GPS

collar data were large (>0.67) and positive for KDE den-
sity and polygon area, first quartile and median interelk
distance, cumulative nearest-neighbor distribution,
Ripley’s K summaries, and the Gini coefficient but were
smaller for maximum interelk distance and median and
maximum nearest-neighbor distances (Table 2). Some of
the highest consistent correlations were for the KDE
polygon area, with the correlations between satellite–GPS
and satellite–UAS comparisons all over 0.95, indicating
that for the same spatial extent and approximate time, if
the satellite-derived KDE polygon area was small, the
GPS-derived or UAS-derived KDE polygon areas were
also small. Graphical comparisons of interelk distance
distributions showed similar aggregation patterns across
data sources (Figure 2), and KDEs identified similar loca-
tions of concentrated use (Figure 3). UAS aggregation
metric patterns matched those from GPS and satellite
data sources well even in one case where timing differ-
ences and resulting animal movement led to substantially
different numbers of elk (26 March 2019) (Figure 2b). We
excluded the postfeeding satellite image (19 April 2019)
from satellite–GPS comparisons because patchy snow
conditions limited visibility of elk in parts of the image
(but not where UAS flights occurred) (Appendix S1:
Figures S1a,d and S3a,b).

TAB L E 2 Correlations across matched spatial and temporal extents for summary statistics of aggregation metrics calculated from

satellite, global positioning system (GPS) collar, and unmanned aerial system (UAS) derived elk locations on National Elk Refuge, Wyoming,

USA. We did not calculate the correlation for kernel density estimate (KDE) density because GPS data used a full week of locations for each

elk, complicating interpretation. NN = nearest neighbor

Metric
Satellite—GPS
correlation (n = 4)

Satellite–UAS
correlation (n = 4)

UAS–GPS
correlation (n = 7)

Elk density inside 50% KDE polygon NA 0.674 NA

Elk density inside 70% KDE polygon NA 0.979 NA

Elk density inside 90% KDE polygon NA 0.972 NA

50% KDE polygon area 0.953 0.972 NA

70% KDE polygon area 0.992 0.981 NA

90% KDE polygon area 0.983 0.995 NA

First quartile interelk distance 0.768 0.995 0.967

Median interelk distance 0.784 0.978 0.813

Maximum interelk distance 0.611 0.963 0.902

Median NN distance 0.511 �0.314 0.671

Maximum NN distance 0.424 0.599 0.497

Cumulative NN estimated area/theoretical area 0.858 0.848 NA

Cumulative NN area between/estimated area 0.855 0.847 NA

Ripley’s K estimated area/theoretical area 0.972 0.746 NA

Ripley’s K area between/estimated area 0.977 0.769 NA

Gini coefficient 0.821 0.974 0.820
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Sensitivity of metrics to changes in
aggregation

KDE-based metrics (density and polygon area) and first
quartile interelk distance had the greatest variation
(i.e., the highest CV) among metrics and, thus, the greatest
sensitivity to changes in aggregation (Table 3). Other met-
ric summary statistics (median and maximum interelk dis-
tance, median and maximum nearest-neighbor distance,
cumulative nearest-neighbor distribution, Ripley’s K, and
Gini coefficient) exhibited lower CVs or had CVs that were
inconsistent across data sources. The k-means cluster anal-
ysis (k = 2) suggested a natural break between highly sen-
sitive and less sensitive metrics at CV = 0.4.

Satellite and UAS compared to traditional
survey methods

We compared satellite elk counts to two traditional classi-
fication counts (an annual minimum count composed of
helicopter and intensive ground counts) and two feed-
ground counts (less intensive surveys conducted while
feeding). Two UAS flights coincided with feed-ground
counts and counts differed by approximately 1% and 12%
(26 and 27 March 2019, respectively). However, satellite-

derived counts were always lower than classification and
feed-ground counts (Appendix S1: Table S2).

Effects of supplemental feeding on
aggregation

Higher aggregation during supplemental feeding versus
nonfeeding was evident (p < 0.05) (Table 4) for most
aggregation metrics that were sensitive to changes in elk
distribution (CV > 0.4) across data sources. Metrics based
on KDEs consistently identified higher aggregation dur-
ing feeding across data sources. For example, elk densi-
ties within 50% KDEs estimated from satellite imagery
ranged 1.33 to 3.34 times higher on fed versus unfed
dates (Figures 3a, c). The areas within those 50% utiliza-
tion polygons ranged from 1.85 to 2.94 times smaller on
fed versus unfed dates. Similarly, GPS-derived 50% utili-
zation polygons were 1.39 to 4.76 times smaller during
fed versus unfed weeks (Figure 2b,d), and maximum
intensity of use was 1.63 times larger in 2017 and 2.71
times higher in 2019 compared to 2018 (unfed)
(Appendix S1: Figure S3). In UAS imagery, analysis pro-
vided strong evidence (F1,4 > 38, p ≤ 0.003) of feeding
effects based on elk densities within utilization polygons.
The UAS data also showed that aggregation was similar

F I GURE 2 Interelk distance distributions for matching spatial extents of (a) satellite–Global positioning system (GPS) (full study area),

(b) satellite–unmanned aerial system (UAS) (flight extent), and (c) GPS–UAS (flight extent, dates with n ≥ 9 elk, ≥ 36 pairs) data on the

National Elk Refuge, Wyoming, USA. Each box contains the first through third quartiles with a horizontal midline for the median and

whiskers for the interquartile range*1.5. Sample size of elk indicated at top of plot (2019 unless otherwise indicated)
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during the morning and midday flights but decreased in
the evening (z ≥ 2.26, p ≤ 0.024).

Calculated elk densities depended on the scale of
the utilization polygon. For example, satellite-derived
elk densities inside 50% utilization polygons ranged
from 839 to 1089 elk/km2 for fed versus 158 to
437 elk/km2 for unfed dates, while densities inside
90% utilization polygons ranged from 198 to

274 elk/km2 for fed versus 38 to 149 elk/km2 for
unfed dates.

DISCUSSION

Our results suggest that all three data sources (satellite,
UAS, and GPS) can be used individually in adaptive

F I GURE 3 Elk locations (black dots) shown with 50 (light blue), 70 (blue), and 90 (green) percentage utilization polygons on the

National Elk Refuge, Wyoming, USA (black polygon shows study area outline) for (a) satellite locations and (b) weekly global positioning

system (GPS) locations, and summaries of utilization polygon area for (c) satellite locations and (d) GPS locations. Note reduced satellite-

derived utilization polygon size on 19 April 2019 from poor image quality

ECOLOGICAL APPLICATIONS 9 of 16
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management frameworks to evaluate changes in aggrega-
tion over time for a focal population if biologists collect data
under consistent field conditions. All data sources con-
curred that elk aggregations were higher during supplemen-
tal feeding and tracked changes associated with feeding.
KDE-based metrics and the first quartile of interelk dis-
tances best tracked and were most sensitive to large differ-
ences in aggregation across data sources. The kernel density
approach simultaneously yielded information about the

location of aggregations, which may be useful for the man-
agement of environmentally transmitted diseases.

Satellite

Despite some challenges, satellite imagery successfully
detected changes in elk aggregation across periods with
and without supplemental feeding on the NER. We relied

TAB L E 3 Coefficients of variation (CV) for summary statistics of aggregation metrics calculated from satellite, global positioning system

(GPS) collar, and unmanned aerial system (UAS) derived elk locations in National Elk Refuge, Wyoming, USA

Metric Satellite CV UAS CVa GPS CVb

Elk density inside 50% KDE polygon 0.523 1.104 NA

Elk density inside 70% KDE polygon 0.496 1.222 NA

Elk density inside 90% KDE polygon 0.424 1.370 NA

50% KDE polygon area 0.537 0.473 0.691

70% KDE polygon area 0.489 0.513 0.758

90% KDE polygon area 0.472 0.534 0.757

First quartile interelk distance 0.922 0.402 1.20

Median interelk distance 0.285 0.422 0.742

Median NN distance 0.177 0.461 0.668

Cumulative NN estimated area/theoretical area 0.004 0.034 0.015

Cumulative NN area between/estimated area 0.011 0.191 0.050

Ripley’s K estimated area/theoretical area 0.289 0.529 0.410

Ripley’s K area between/estimated area 0.102 0.289 0.182

Gini coefficient 0.006 0.082 0.001

Abbreviations: KDE, kernel density estimate; NN, nearest neighbor.
aCalculated using all 24 flights, with extent for each flight set to flight extent.
bUsing dates corresponding to satellite images. Because we used a full week for each elk and thus have duplicate locations for each elk, it is incorrect to
interpret density here.

TAB L E 4 Mean differences in aggregation (Δ, SE) during times of supplemental feeding relative to nonfeeding based on satellite and

global positioning system (GPS) (n = 2 fed, 2 unfed in 2018 and 2019) locations and median change in log (density) (MLΔ, SE) for
unmanned aerial systems (UASs; n = 6 fed, 12 unfed observations over 6 days with 3 flights/day in 2019) in National Elk Refuge, Wyoming,

USA. Note that units differ based on analysis method

Satellite UASa GPSb

Metric Δ SE MLΔ SE Δ SE

Elk/km2 inside 50% KDE polygon 580** 136 1.50*** 0.24 10.9* NA

Elk/km2 inside 70% KDE polygon 278* 106 1.73*** 0.22 7.94** NA

Elk/km2 inside 90% KDE polygon 114* 46.1 1.97*** 0.27 4.78** NA

50% KDE polygon area (km2) �6.33*** 0.34 �0.0005 0.005 �2.90** 0.71

70% KDE polygon area (km2) �11.4** 2.6 �0.015 0.012 �8.88** 1.72

90% KDE polygon area (km2) �24.4** 5 �0.045 0.024 �29.6** 10.2

First quartile interelk distance (m) �1769** 351 �35.0* 14.1 �966** 312

*p < 0.1 **p < 0.05, ***p < 0.01; p-values for satellite and GPS are one-sided.
aExponentiated effect sizes are 4.48 (50% KDE), 5.64 (70% KDE), and 7.17 (90% KDE) times higher than median density without feeding.
bKernel densities from GPS-collared elk for a full week, scaled by number of collared elk.

10 of 16 GRAVES ET AL.

 19395582, 2022, 5, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2600, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



on photo interpretation in this temperate landscape to
identify elk because elk shared spectral characteristics
with landscape features, which prevented the use of auto-
mated detection methods (LaRue et al., 2015). We confi-
dently identified most elk in imagery but had difficulty
discriminating elk under some conditions (e.g., patchy
snow so animals blended with background, cloud cover,
distortion in the image, low lighting). Thus, high-
resolution satellite imagery can provide useful data in
some temperate-region habitats and may be appropriate
for interannual comparisons under similar conditions,
particularly given a priori knowledge of species behavior
and occurrence within the focal area. However, detection
rates have the potential to vary under heterogeneous
land, cloud, and snow cover, and further research on the
role of detection on aggregation metrics may be needed
for some uses of this data source.

Unmanned aerial systems

UAS also identified differences in aggregation patterns
resulting from supplemental feeding. Because elk are
very clearly visible in UAS imagery and being overhead
meant a clear view of all elk in an area, the detection rate
of elk most likely approached 1 in the areas surveyed
(Figure 4). However, much of the NER is below con-
trolled airspace, and we could not fly all feed grounds.

Flight altitude restrictions also limited our ability to cover
larger areas. UAS may be most useful in areas where
flights can cover the full wintering grounds and in com-
parisons of changes at fine spatial scales. For example,
UAS would be most appropriate at the NER for evaluat-
ing the effects of varying feeding drop rate, line spacing,
or area. Recent and future advances in UAS technology
(e.g., longer flight duration, larger payload capacities, and
multiple sensor packages—combined thermal and visual
imagery) (Witczuk et al., 2017) will improve the utility of
UASs for adaptive management.

Global Positioning System

Our results suggest that GPS collars provide the best data
for large extents when the focus is on temporal variation.
On the NER, methods of deploying collars were consis-
tent across years of study. However, differences in the
approach to capturing animals or opportunistic collaring
of animals with different movement patterns could limit
interannual comparisons of aggregation using GPS data
in other areas. Also, because all GPS-collared elk in this
study were female, results reflect only female or poten-
tially mixed-sex groups. Standardizing the approach to
collaring, maintaining large numbers of collars, rec-
ollaring the same animals, collaring males, and examin-
ing the data for changes in collar deployment locations

F I GURE 4 Unmanned aerial system image with patches of melted snow in elk bedding area from 31 January 2019 illustrating that elk

can typically be distinguished even in cases where prior bedding locations are a color similar to that of elk

ECOLOGICAL APPLICATIONS 11 of 16
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and herd associations could improve the utility of GPS
collar data in aggregation comparisons.

Comparisons across data sources

Our analyses suggest that comparing aggregation across
data sources can be useful but requires consideration of
spatial and temporal scale as well as data source quality.
For example, elk moved outside the small spatial extent
of one satellite–UAS comparison in 40 min, producing
different counts but similar aggregation measures,
because the UAS data were still representative (26 March)
(Figure 2). When comparing aggregation across data
sources, researchers should consider whether potential
biases within each data source were minimized
(e.g., using known peak aggregation times to minimize
the effects of fine-scale temporal variation). We
highlighted a date when poor conditions for identifica-
tion of elk with satellite imagery affected densities and
summary statistics, which led us to exclude these data
from further analysis (Appendix S1: Figure S1). Before
using summary statistics of aggregation metrics, screen-
ing for the obfuscation of important patterns will provide
insight for interpretation and use. For example, the
median interelk distance can be misleading when sub-
groups of animals occur, and the full interelk distribution
is multimodal (Appendix S1: Figure S3). We did not fit
predictive models to translate densities across data
sources because of limited sample sizes for comparisons
(four for satellite–GPS and satellite–UAS, seven for GPS–
UAS comparisons), but this step would facilitate compar-
isons of aggregation across multiple data sources.

Data choice

Assessing what data source to use for research or adap-
tive management requires careful consideration of project
goals, study area conditions, and available resources. Sat-
ellite imagery can be the least expensive when adequate
resolution images are free, requiring only a few hours to
order and 1–2 days to digitize elk in a NER-sized
(~223 km2) image, but it requires consistent conditions
and consistency in photo interpretation for useful com-
parisons. We requested multiple consecutive days of
Worldview-2 or 3 imagery during good weather windows,
which resulted in approximately one useful (though not
always ideal) image per request. Although the
Worldview-3 images had higher spatial resolution than
Worldview-2 images, weather and contrast conditions
had greater effects on the utility of an image for detecting
elk versus image sources. UASs provide higher-resolution

images than satellites, are not obstructed by cloud cover,
and can be quickly scheduled to accommodate good
weather conditions (Appendix S1: Figure S2). Our
quadcopter, which had a limited flight time and range
(12 min and ~1 km, respectively), was most suitable for
targeted flights over smaller areas. Other UASs, such as
fixed-wing models or longer-duration rotorcraft, can
cover much larger areas per flight. The most expensive
option, GPS collars, can address fine-scale temporal vari-
ation when distributed well but typically require han-
dling relatively large numbers of animals collared within
a wintering range or other high-density area (Cross
et al., 2012). Detection of contacts and accurate measure-
ment of other metrics will be highest if fix rates are high
and GPS location error is small, which occurred in this
study. Data obtained during capture (e.g., samples for dis-
ease, body condition), and the ability to use location data
to quantify contact rates (Janousek et al., 2021) and
answer other habitat use and migration questions, may
justify the cost (e.g., Mikle et al. 2019).

Because of controlled airspace restrictions over the
NER, neighboring forested areas, and plans on reducing
feeding during springtime when elk are harder to identify
in satellite imagery, we expect continued GPS collar data
will best allow evaluation of the effects of planned adap-
tive management on aggregation at the NER. Combining
GPS collar data collection with traditional classification
counts will provide continued information on how the
GPS collar sample relates to the spatial distribution of the
full wintering population during periods of maximum
density. Targeted UAS flights would best quantify
changes in aggregation from fine-scale alterations in
feeding operations outside controlled airspace.

CONCLUSIONS

All data sources indicated that elk densities were sub-
stantially higher during feeding. Elk identified in the two
satellite images when feeding occurred, both likely
undercounts, produced elk densities within 50% KDE
polygons of 839 and 1089 elk/km2 (Figure 3a)
(22 February 2019 and 26 March 2019). These densities
are much greater than the 16–100 elk/km2 in Rocky
Mountain National Park, which had a 13% CWD preva-
lence (Monello et al., 2014). The relationship between
CWD and host-density is unresolved (Potapov
et al., 2016; Storm et al., 2013) but probably depends on
the spatial scale of the analysis and how local group sizes
scale with population size (Cross et al., 2009). However,
denser concentrations of elk on the NER are likely to
translate into higher environmental prion loads in the
future (Almberg et al., 2011), with the potential for
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greater transmission of CWD that could result in signifi-
cant population declines. CWD population modeling spe-
cific to the Jackson elk herd suggested that within 5 years
of introduction, mean predicted CWD prevalence could
reach 10%, and the population would decline at a 7%
prevalence, even without cow elk harvest in the popula-
tion (Galloway et al., 2017). CWD was detected in a
hunter-killed elk nearby in Grand Teton National Park in
fall 2020, ~2 years after a road-killed deer was detected
in 2018.

Density estimates can be used to understand multiple
aspects of habitat and space use across research and con-
servation applications. We provide insight on data
sources and metrics to quantify animal aggregation.
KDEs, KDE polygon area, and the first quantile of inte-
relk distances provide the most valuable indices of the
metrics considered here. Furthermore, kernel density
contours can highlight areas of intensive use, which may
be important for identifying areas of protection from dis-
turbances, prioritizing locations of activities to reduce
human–wildlife conflict, such as fencing or harvest,
targeting collaring or other sampling programs, or opti-
mizing soil or other treatments in areas where infectious
agents for environmentally transmitted diseases may be
concentrated. We expect the guidelines provided here

(Table 5) will assist others who are considering how to
quantify animal density in open areas, for other density-
dependent and environmentally transmitted diseases, at
other winter ranges, and across a range of adaptive man-
agement options, including hunting, irrigation, fire, for-
estry, weed, or range treatments (Janousek et al., 2021).
Following these guidelines, we conclude that GPS collars
will provide the NER with the best information to evalu-
ate how animal densities change with population size
and planned changes in management, especially in
spring when elk are more difficult to distinguish in satel-
lite imagery with patchy snow cover.
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TAB L E 5 Comparison of remote sensing data sources for assessing animal aggregation

Satellite UAS GPS

Spatial sample scale Large area Small area Depends on areas used or co-used
by collared animal

Temporal sample
scale

One/day, most likely only 1 good
image/3 days (weather
dependent)

Up to several per day Depends on fix interval, usually
>1/day

Objective that best
matches data
source

Aggregation level at known
maximum time matching
satellite

Count of herd in targeted areas (e.g.,
winter range); maximum
aggregation levels in areas with
attractants (e.g., hay fields; feeding
areas)

Evaluate drivers of movement and
aggregation; identify locations
with high site fidelity

Challenges Weather; forest canopy; patchy
snow or other conditions that
camouflage elk; detection
may be lower at low densities

Weather; forest canopy (thermal
camera needed); airspace
requirements; targeting far elk more
difficult; targeted nature complicates
comparisons

Getting large, distributed sample
size

Time and Costsa Time: Order, download, and
evaluate image (2 h);
pansharpen and orthorectify
(1 h); digitize elk locations
(8–16 h)
COST: Depends on access.

Time: Travel; flight time (1 h); process
(1 h); digitize elk locations (1–6 h)

COST: UAS hardware, travel

Time: Collar deployment; collar
processing
COST: collars, capture
expenses; more expensive

Abbreviations: UAS, unmanned aerial systems; GPS, Global Positioning System.
aTime estimates are averages per satellite image or UAS flight.

ECOLOGICAL APPLICATIONS 13 of 16

 19395582, 2022, 5, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2600, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ACKNOWLEDGMENTS
Funding provided by the U.S. Fish and Wildlife Service,
the U.S. Geological Survey Disease Program, and the U.S.
Geological Survey North Central Climate Adaptation Sci-
ence Center. The Grand Teton Association provided
funding for GPS collars. Alyson Courtemanch provided
Wyoming Game and Fish Department classification data.
Sarah Gaulke assisted in preliminary analysis. Thanks to
Dan Walsh and two anonymous reviewers. Any use of
trade, firm, or product names is for descriptive purposes
only and does not imply endorsement by the U.S.
government.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
Data (Graves et al., 2021) are available from the US Geo-
logical Survey ScienceBase repository at https://doi.org/
10.5066/P9GF8YYP.

ORCID
Tabitha A. Graves https://orcid.org/0000-0001-5145-
2400
Michael J. Yarnall
Aaron N. Johnston https://orcid.org/0000-0003-4659-
0504
Todd M. Preston
Geneva W. Chong
Eric K. Cole
William M. Janousek https://orcid.org/0000-0003-3978-
1775
Paul C. Cross

REFERENCES
Almberg, E. S., P. C. Cross, C. J. Johnson, D. M. Heisey, and B. J.

Richards. 2011. “Modeling Routes of Chronic Wasting Disease
Transmission: Environmental Prion Persistence Promotes
Deer Population Decline and Extinction.” PLoS One 6(5):
e19896. https://doi.org/10.1371/journal.pone.0019896.

Anderson, C. B. 2018. “Biodiversity Monitoring, Earth Observa-
tions, and the Ecology of Scale.” Ecology Letters 21: 1572–85.
https://doi.org/10.1111/ele.13106.

Baddeley, A., E. Rubak, and R. Turner. 2015. Spatial Point Patterns:
Methodology and Applications with R. London: Chapman and
Hall/CRC Press.

Barasona, J. A., M. Mulero-P�azm�any, P. Acevedo, J. J. Negro, M. J.
Torres, C. Gort�azar, and J. Vincente. 2014. “Unmanned Air-
craft Systems for Studying Spatial Abundance of Ungulates:
Relevance to Spatial Epidemiology.” PLoS One 9(12): e115608.
https://doi.org/10.1371/journal.pone.0115608.

Becker, D. J., and R. J. Hall. 2014. “Too Much of a Good Thing:
Resource Provisioning Alters Infectious Disease Dynamics in
Wildlife.” Biological Letters 10: 20140309. https://doi.
org/10.1098/rsbl.2014.0309.

Borchers, D. L., W. Zucchini, and R. M. Fewster. 1998. “Mark-
Recapture Models for Line Transect Surveys.” Biometrics 54:
1207–20.

Bates, D., M. Mächler, B. M. Bolker, and S. C. Walker. 2015.
“Fitting Linear Mixed-Effects Models Using lme4.” Journal of
Statistical Software 67: 1–48.

Calenge, C. 2006. “The Package Adehabitat for the R Software: A
Tool for the Analysis of Space and Habitat Use by Animals.”
Ecological Modelling 197: 516–9.

Coe, P. K., D. A. Clark, R. M. Nielson, S. C. Gregory, J. B. Cupples,
M. J. Hedrick, et al. 2018. “Multiscale Models of Habitat Use
by Mule Deer in Winter.” Journal of Wildlife Management 82:
1285–99. https://doi.org/10.1002/jwmg.21484

Cross, P. C., J. Drewe, V. Patrek, G. Pearce, M. D. Samuel, and R. J.
Delahay. 2009. “Wildlife Population Structure and Parasite
Transmission: Implications for Disease Management.” In
Management of Disease in Wild Mammals, edited by R. J.
Delahay, G. C. Smith, and M. R. Hutchings, 9–30. Tokyo:
Springer.

Cross, P. C., T. G. Creech, M. R. Ebinger, D. M. Heisey, K. Irvine,
and S. Creel. 2012. “Wildlife Contact Analysis: Emerging
Methods, Questions, and Challenges.” Behavioral Ecology and
Sociobiology 66: 1437–47. https://doi.org/10.1007/s00265-012-
1376-6.

Cross, P. C., W. H. Edwards, B. M. Scurlock, E. J. Maichak, and
J. D. Rogerson. 2007. “Effects of Management and Climate on
Elk Brucellosis in the Greater Yellowstone Ecosystem.” Ecolog-
ical Applications 17: 957–64. https://doi.org/10.1890/06-1603.

Cross, P. C., T. G. Creech, M. R. Ebinger, K. Manlove, K. Irvine, J.
Henningsen, J. Rogerson, B. M. Scurlock, and S. Creel. 2013.
“Female Elk Contacts Are neither Frequency nor Density
Dependent.” Ecology 94: 2076–86. https://doi.org/10.1890/12-
2086.1.

Descamps, S., S. Jenouvrier, H. G. Gilchrist, and M. R. Forbes. 2012.
“Avian Cholera, a Threat to the Viability of an Arctic Seabird
Colony?” PLoS One 7: e29659. https://doi.org/10.1371/journal.
pone.0029659

Dorman, M. 2019. “nngeo: K-Nearest Neighbor Join for Spatial
Data.” R Package Version 0.2.9 https://CRAN.R-project.
org/package=nngeo

Dougherty, E. R., D. P. Seidel, C. J. Carlson, O. Spiegel, and W. M.
Getz. 2018. “Going through the Motions: Incorporating Move-
ment Analyses into Disease Research.” Ecology Letters 21: 588–
604. https://doi.org/10.1111/ele.12917.

Fox, J., and S. Weisberg. 2011. An R Companion to Applied Regres-
sion, Second ed. Thousand Oaks, California, USA: Sage. http:
//socserv.socsci.mcmaster.ca/jfox/Books/Companion.

Galloway, N. L., R. J. Monello, D. Brimeyer, E. K. Cole, and N. T.
Hobbs. 2017. “Model Forecasting of the Impacts of Chronic
Wasting Disease on the Jackson Elk Herd. 2017.”
United States Fish and Wildlife Service Technical Report.

Gini, C. 1912, 1955. “Variabilità e mutabilità. Reprinted in” In
Memorie di metodologica statistica, edited by E. Pizetti and T.
Salvemini. Libreria Eredi Virgilio Veschi: Rome.

Gini, C. 1921. “Measurement of Inequality of Incomes.” The Eco-
nomic Journal 31(121): 124–6. https://doi.
org/10.2307/2223319.

Gitzen, R. A., J. J. Millspaugh, and B. J. Kernohan. 2006. “Band-
width Selection for Fixed-Kernel Analysis of Animal

14 of 16 GRAVES ET AL.

 19395582, 2022, 5, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2600, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5066/P9GF8YYP
https://doi.org/10.5066/P9GF8YYP
https://orcid.org/0000-0001-5145-2400
https://orcid.org/0000-0001-5145-2400
https://orcid.org/0000-0001-5145-2400
https://orcid.org/0000-0003-1753-7931
https://orcid.org/0000-0003-4659-0504
https://orcid.org/0000-0003-4659-0504
https://orcid.org/0000-0003-4659-0504
https://orcid.org/0000-0002-8812-9233
https://orcid.org/0000-0003-3883-5153
https://orcid.org/0000-0002-2229-5853
https://orcid.org/0000-0003-3978-1775
https://orcid.org/0000-0003-3978-1775
https://orcid.org/0000-0003-3978-1775
https://orcid.org/0000-0001-8045-5213
https://doi.org/10.1371/journal.pone.0019896
https://doi.org/10.1111/ele.13106
https://doi.org/10.1371/journal.pone.0115608
https://doi.org/10.1098/rsbl.2014.0309
https://doi.org/10.1098/rsbl.2014.0309
https://doi.org/10.1002/jwmg.21484
https://doi.org/10.1007/s00265-012-1376-6
https://doi.org/10.1007/s00265-012-1376-6
https://doi.org/10.1890/06-1603
https://doi.org/10.1890/12-2086.1
https://doi.org/10.1890/12-2086.1
https://doi.org/10.1371/journal.pone.0029659
https://doi.org/10.1371/journal.pone.0029659
https://cran.r-project.org/package=nngeo
https://cran.r-project.org/package=nngeo
https://doi.org/10.1111/ele.12917
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
https://doi.org/10.2307/2223319
https://doi.org/10.2307/2223319


Utilization Distributions.” Journal of Wildlife Management
70(5): 1334–44. https://doi.org/10.2193/0022-541X(2006)70
[1334:BSFFAO]2.0.CO;2

Graves, T. A., M. J. Yarnall, A. J. Johnston, T. M. Preston, G. W.
Chong, E. K. Cole, W. M. Janousek, and P. C. Cross. 2021.
“Remotely Sensed Elk Locations on the National elk Refuge,
Wyoming, 2018–2019.” U.S Geological Survey Data Release
https://doi.org/10.5066/P9GF8YYP.

Hijmans, R. J. 2019. “raster: Geographic Data Analysis and Model-
ing.” R Package Version 3.0-2. https://CRAN.R-project.
org/package=raster

Hollings, T., M. Burgman, M. van Andel, M. Gilbert, T. Robinson,
and A. Robinson. 2018. “How Do you Find the Green Sheep?
A Critical Review of the Use of Remotely Sensed Imagery to
Detect and Count Animals.” Methods in Ecology and Evolution
9: 881–92. https://doi.org/10.1111/2041-210X.12973.

Janousek, W. M., T. A. Graves, G. Chong, E. K. Cole, E. Berman,
and P. Cross. 2021. “Human Activities and Weather Drive
Contact Rates of Wintering Elk.” Journal of Applied Ecology 58
(3): 667–76. https://doi.org/10.1111/1365-2664.13818.

Johnson, H. E., M. Hebblewhite, T. R. Stephenson, D. W. German,
B. M. Pierce, and V. C. Bleich. 2013. “Evaluating Apparent Com-
petition in Limiting the Recovery of an Endangered Ungulate.”
Oecologia 171: 295–307. https://doi.org/10.1007/s00442-012-2397-6

Kays, R., M. C. Crofoot, W. Jetz, and M. Wikelski. 2015. “Terrestrial
Animal Tracking as an Eye on Life and Planet.” Science 348:
aaa2478. https://doi.org/10.1126/science.aaa2478.

Kendall, K., T. A. Graves, J. A. Royle, A. MacLeod, J. Boulanger, K.
McKelvey, and J. Waller. 2019. “Using Bear Rub Data and Spa-
tial Capture-Recapture Models to Estimate Trend in a Brown
Bear Population.” Scientific Reports 9: 16804. https://doi.
org/10.1038/s41598-019-52783-5.

Kenward, M. G., and J. Roger. 1997. “Small Sample Inference for
Fixed Effects from Restricted Maximum Likelihood.” Biomet-
rics 53: 983–97.

Kint, V., M. van Meirveene, L. Nachtergale, G. Geudens, and N. Lust.
2003. “Spatial Methods for Quantifying Forest Stand Structure
Development: A Comparison between Nearest-Neighbor Indices
and Variogram Analyses.” Forest Science 1: 36–49.

LaRue, M. A., S. Stapleton, and M. Anderson. 2017. “Feasibility of
Using High-Resolution Satellite Imagery to Assess Vertebrate
Wildlife Populations.” Conservation Biology 31: 213–20. https:
//doi.org/10.1111/cobi.12809

LaRue, M. A., S. S. Stapleton, C. C. Porter, T. Atwood, N. Lecomte,
and S. Atkinson. 2015. “Testing Methods for Using High-
Resolution Satellite Imagery to Monitor Polar Bear Abundance
and Distribution.” Wildlife Society Bulletin 39: 772–9. https:
//doi.org/10.1002/wsb.596

Lorenz, M. 1905. “Methods of Measuring the Concentration of
Wealth.” Publications of the American Statistical Association 9
(70): 209–19. https://doi.org/10.2307/2276207.

Lloyd-Smith, J. O., P. C. Cross, C. J. Briggs, M. Daugherty, W. M.
Getz, J. Latto, M. S. Sanchez, A. B. Smith, and A. Swei. 2005.
“Should we Expect Population Thresholds for Wildlife Dis-
ease?” Trends in Ecology & Evolution 20(9): 511–9. https://doi.
org/10.1016/j.tree.2005.07.004.

McCallum, H., N. Barlow, and J. Hone. 2001. “How Should Pathogen
Transmission Be Modelled?” Trends in Ecology & Evolution 16
(6): 295–300. https://doi.org/10.1016/S0169-5347(01)02144-9.

Miguel, E., V. Grosbois, A. Caron, D. Pople, B. Roche, and C. A.
Donnelly. 2020. “A Systemiatic Approach to Assess the Poten-
tial and Risks of Wildlife Culling for Infectious Disease Con-
trol.” Communications Biology 3: 353–67. https://doi.
org/10.1038/s42003-020-1032-z.

Mills, S. 2013. Conservation of Wildlife Populations: Demography,
Genetics, and Management, Second ed. West Sussex, UK: John
Wiley & Sons.

Mikle, N. L., T. A. Graves, and E. M. Olexa. 2019. “To Forage or
Flee: Lessons from an Elk Migration near a Protected Area.”
Ecosphere 10(4): e02693. https://doi.org/10.1002/ecs2.2693.

Monello, R. J., J. G. Powers, N. T. Hobbs, T. R. Spraker, M. K.
Watry, T. L. Johnson, and M. A. Wild. 2014. “Survival and
Population Growth of an Elk Population with a Long His-
tory of Exposure to Chronic Wasting Disease.” Journal of
Wildlife Management 78: 214–23. https://doi.
org/10.1002/jwmg.665

National Land Cover Database. 2016. “Multi-Resolution Land Char-
acteristics consortium.” https://www.mrlc.gov/data/nlcd-2016-
land-cover-conus

Pebesma, E. 2018. “Simple Features for R: Standardized Support for
Spatial Vector Data.” The R Journal 10(1): 439–46. https://doi.
org/10.32614/RJ-2018-009.

Potapov, A., E. Merrill, M. Pybus, and M. A. Lewis. 2016. “Chronic
Wasting Disease: Transmission Mechanisms and the Possibil-
ity of Harvest Management.” PLoS One 11(3): e0151039. https:
//doi.org/10.1371/journal.pone.0151039.

Preston, T. M., M. L. Wildhaber, N. G. Green, J. L. Albers, and G. P.
Debendetto. 2021. “Enumerating White-Tailed Deer Using
Unmanned Aerial Vehicles: A Case Study.” Wildlife Society
Bulletin 45(1): 97–108. https://doi.org/10.1002/wsb.1149

R Core Team. 2019. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Com-
puting. https://www.R-project.org/.

Ripley, B. D. 1977. “Modelling Spatial Patterns (with Discussion).”
Journal of the Royal Statistical Society, Series B 39: 172–212.

Ripley, B. D. 1988. Statistical Inference for Spatial Processes. Cam-
bridge: Cambridge University Press.

Rodríguez-Pastor, R., R. Escudero, D. Vidal, F. Mougeot, B. Arroyo,
X. Lambin, et al. 2017. “Density-Dependent Prevalence of
Francisella Tularensis in Fluctuating Vole Populations, North-
western Spain.” Emerging Infectious Diseases 23: 1377–9.

Royle, J. A., R. Chandler, K. D. Gazenski, and T. A. Graves. 2013.
“Spatial Capture-Recapture Models for Jointly Estimating Pop-
ulation Density and Landscape Connectivity.” Ecology 94:
287–94. https://doi.org/10.1890/12-0413.1

Royle, J. A., R. B. Chandler, R. Sollmann, and B. Gardner. 2013.
“Fully Spatial Capture-Recapture Models.” In Spatial Capture-
Recapture 577. Waltham, MA: Academic Press.

Sequeira, A. M. M., M. R. Heupel, M.-A. Lea, V. M. Eguíluz,
C. M. Duarte, M. G. Meekan, M. Thums, et al. 2019. “The
Importance of Sample Size in Marine Megafauna Tagging
Studies.” Ecological Applications 29: e01947. https://doi.
org/10.1002/eap.1947.

Silverman, B. 1986. Density Estimation for Statistics and Data Analy-
sis. London: Chapman and Hall.

Smyser, T. J., R. J. Guenzel, C. N. Jacques, and E. O. Garton. 2016.
“Double-Observer Evaluation of Pronghorn Aerial Line-
Transect Surveys.” Wildlife Resources 43: 474–81.

ECOLOGICAL APPLICATIONS 15 of 16

 19395582, 2022, 5, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2600, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.2193/0022-541X(2006)70[1334:BSFFAO]2.0.CO;2
https://doi.org/10.2193/0022-541X(2006)70[1334:BSFFAO]2.0.CO;2
https://doi.org/10.5066/P9GF8YYP
https://cran.r-project.org/package=raster
https://cran.r-project.org/package=raster
https://doi.org/10.1111/2041-210X.12973
https://doi.org/10.1111/1365-2664.13818
https://doi.org/10.1007/s00442-012-2397-6
https://doi.org/10.1126/science.aaa2478
https://doi.org/10.1038/s41598-019-52783-5
https://doi.org/10.1038/s41598-019-52783-5
https://doi.org/10.1111/cobi.12809
https://doi.org/10.1111/cobi.12809
https://doi.org/10.1002/wsb.596
https://doi.org/10.1002/wsb.596
https://doi.org/10.2307/2276207
https://doi.org/10.1016/j.tree.2005.07.004
https://doi.org/10.1016/j.tree.2005.07.004
https://doi.org/10.1016/S0169-5347(01)02144-9
https://doi.org/10.1038/s42003-020-1032-z
https://doi.org/10.1038/s42003-020-1032-z
https://doi.org/10.1002/ecs2.2693
https://doi.org/10.1002/jwmg.665
https://doi.org/10.1002/jwmg.665
https://www.mrlc.gov/data/nlcd-2016-land-cover-conus
https://www.mrlc.gov/data/nlcd-2016-land-cover-conus
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1371/journal.pone.0151039
https://doi.org/10.1371/journal.pone.0151039
https://doi.org/10.1002/wsb.1149
https://www.r-project.org/
https://doi.org/10.1890/12-0413.1
https://doi.org/10.1002/eap.1947
https://doi.org/10.1002/eap.1947


Stapleton, S., M. LaRue, N. Lecomte, S. Atkinson, D. Garshelis, C.
Porter, and T. Atwood. 2014. “Polar Bears from Space:
Assessing Satellite Imagery as a Tool to Track Arctic Wildlife.”
PLoS One 9: e101513.

Storm, D. J., M. D. Samuel, R. E. Rolley, P. Shelton, N. S. Keuler,
B. J. Richards, and T. R. Van Deelen. 2013. “Deer Density and
Disease Prevalence Influence Transmission of Chronic
Wasting Disease in White-Tailed Deer.” Ecosphere 4(1): 1–14.
https://doi.org/10.1890/ES12-00141.1.

Tosa, M. I., E. M. Schauber, and C. K. Nielsen. 2015. “Familiarity
Breeds Contempt: Combining Proximity Loggers and GPS
Reveals Female White-Tailed Deer (Odocoileus Virginianus)
Avoiding Close Contact with Neighbors.” Journal of Wildlife
Diseases 51(1): 79–88. https://doi.org/10.7589/2013-06-139

Tosa, M. I., E. M. Schauber, and C. K. Nielsen. 2017. “Localized
Removal Affects White-Tailed Deer Space Use and Contacts.”
The Journal of Wildlife Management 81(1): 26–37. https://doi.
org/10.1002/jwmg.21176.

Triguero-Ocaña, R., J. A. Barasona, F. Carro, R. C. Soriguer, J.
Vicente, and P. Acevedo. 2019. “Spatiotemporal Trends in
the Frequency of Interspecific Interactions between Domes-
tic and Wild Ungulates from Mediterranean Spain.” PLoS
One 14(1): e0211216. https://doi.org/10.1371/journal.
pone.0211216.

U.S. Fish and Wildlife Service and National Park Service,
U.S. Department of the Interior. 2007. “Final Bison and Elk
Management Plan and Environmental Impact Statement,
National Elk Refuge, Grand Teton National Park, and John
D. Rockefeller, Jr., Memorial Parkway.” Denver, CO.

U.S. Fish and Wildlife Service. 2019. “Bison and Elk Management
Step-down Plan. National Elk Refuge, Grand Teton National
Park, Wyoming.” Lakewood, CO: U.S. Department of the Inte-
rior, U.S. Fish and Wildlife Service. National Park Service.

Venesky, M. D., J. L. Kerby, A. Storfer, and M. J. Parris. 2011. “Can
Differences in Host Behavior Drive Patterns of Disease Preva-
lence in Tadpoles?” PLoS One 6: e24991.

Wang, D., Q. Shao, and H. Yue. 2019. “Surveying Wild Animals
from Satellites, Manned Aircraft and Unmanned Aerial Sys-
tems (UASs): A Review.” Remote Sensing 11: 1308.

Wilschut, L., A. Laudisoit, N. K. Hughes, E. A. Addink, S. M. de
Jong, A. P. Heesterbeck, et al. 2015. “Spatial Distribution Pat-
terns of Plague Hosts: Point Pattern Analysis of the Burrows of
Great Gerbils in Kazakhstan.” Journal of Biogeography 42(7):
1281–92. https://doi.org/10.1111/jbi.12534.

Witczuk, J., S. Pagacz, A. Zmarz, and M. Cypel. 2017. “Exploring
the Feasibility of Unmanned Aerial Vehicles and Thermal
Imaging for Ungulate Surveys in Forests - Preliminary
Results.” International Journal of Remote Sensing 39: 1–18.

Worton, B. 1989. “Kernel Methods for Estimating the Utilization
Distribution Inhome-Range Studies.” Ecology 70: 164–8.

Xue, Y., T. Wang, and A. K. Skidmore. 2017. “Automatic Counting
of Large Mammals from Very High Resolution Panchromatic
Satellite Imagery.” Remote Sensing 9: 878.

Yang, Z., T. Wang, A. K. Skidmore, L. J. De, M. Y. Said, and J.
Freer. 2014. “Spotting East African Mammals in Open Savan-
nah from Space.” PLoS One 9: e115989.

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Graves, Tabitha A.,
Michael J. Yarnall, Aaron N. Johnston, Todd
M. Preston, Geneva W. Chong, Eric K. Cole,
William M. Janousek, and Paul C. Cross. 2022.
“Eyes on the Herd: Quantifying Ungulate Density
from Satellite, Unmanned Aerial Systems, and
GPScollar Data.” Ecological Applications 32(5):
e2600. https://doi.org/10.1002/eap.2600

16 of 16 GRAVES ET AL.

 19395582, 2022, 5, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2600, W

iley O
nline L

ibrary on [04/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1890/ES12-00141.1
https://doi.org/10.7589/2013-06-139
https://doi.org/10.1002/jwmg.21176
https://doi.org/10.1002/jwmg.21176
https://doi.org/10.1371/journal.pone.0211216
https://doi.org/10.1371/journal.pone.0211216
https://doi.org/10.1111/jbi.12534
https://doi.org/10.1002/eap.2600

	Eyes on the herd: Quantifying ungulate density from satellite, unmanned aerial systems, and GPScollar data
	INTRODUCTION
	METHODS
	Study area
	Data sources
	Satellite imagery
	UASimagery
	GPScollar and traditional count data

	Aggregation metrics
	Comparisons across data sources
	Evaluation of supplemental feeding on aggregation

	RESULTS
	Aggregation metrics compared across data sources
	Sensitivity of metrics to changes in aggregation
	Satellite and UAS compared to traditional survey methods
	Effects of supplemental feeding on aggregation

	DISCUSSION
	Satellite
	Unmanned aerial systems
	Global Positioning System
	Comparisons across data sources
	Data choice

	CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


