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Abstract
Advances in technology are having a large effect on the priorities for innovation in
statistical ecology. Collaborations between statisticians and ecologists have always
been important in driving methodological development, but increasingly, expertise
from computer scientists and engineers is also needed. We discuss changes that are
occurring and that may occur in the future in surveys for estimating animal abundance.
As technology advances, we expect classical distance sampling and capture-recapture
to decrease in importance, as camera (still and video) survey, acoustic survey, spatial
capture-recapture and genetic methods continue to develop and find new applications.
We explore how these changes are impacting the work of the statistical ecologist.

Keywords Acoustic surveys · Camera-trap surveys · Distance sampling · Genetic
surveys · Occupancy · Spatial capture-recapture

1 Introduction

New technologies canpresent opportunities towildlifemanagers, for example bydeliv-
ering abundance estimates of populations with greater precision or lower bias than is
possible by existing methods, or by offering the promise of successful monitoring of
populations for which no suitable method currently exists. It is unsurprising therefore
that practitioners are often quick to respond to the availability of new technologies.
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However, these technologies often generate data that require innovation from statis-
tical ecologists. In this paper, we summarize some recent developments in wildlife
population assessment methods in response to technological change, and we consider
likely impacts on methodology of future technological changes. We focus mainly
on two classical approaches for estimating animal abundance: distance sampling and
capture-recapture. In addition, we look at how advances in genetics can contribute
for example to estimating the size of harvested populations, or populations for which
samples of DNA, for example through dung or hair, can be collected.We also consider
briefly the impacts of new technology on occupancy methods, N-mixture models and
random encounter models.

We can conceptualise the problem of estimating abundance through the following
general formula.

N̂ =
n∑

i=1

si
(
1− α̂i

)

p̂i âi
(1)

where N is population size, estimated by N̂ ,
i = 1, . . . , n corresponds to n detected animal groups,
αi is the probability that the ith detection is a false positive estimated by α̂i ,

si is the number of animals in the ith detected group (si = 1 if animals are solitary),
pi is the probability of detection for the ith group, estimated by p̂i ,
and ai is the probability that the ith group was available for detection, estimated by

âi .
Equation (1) demonstrates a central principle of estimating abundance, that along

with the numbers of animals seen we must also collect information on the probability
of seeing each one. This is exemplified in Eq. (1) by the probabilities of detection and
availability, one or both of which must typically be estimated in any given wildlife
survey scenario. In effect, these probabilities are corrections for false negatives: ani-
mals that were present but undetected. Although not all estimators of abundance that
we consider have the same form as Eq. (1), the general formulation provides a useful
way of thinking about the statistical framework. The various methods we consider can
often be thought of as different ways to estimate one or more of the above quantities.

2 Distance Sampling

Distance sampling refers to a suite of methods for which detection probability is
estimated as a function of distances to detected objects from a line or point, allow-
ing estimation of abundance as in Eq. (1) (Buckland et al. [13]). The two methods
most frequently used are line transect sampling and point transect sampling. Lines
or points are superimposed over the study area according to a suitable survey design,
and observers travel along the lines or visit the points, to record any animals from the
population of interest, together with their distance from the line or point from which
they are detected. These distances are used to fit a model for the detection function,
which is the probability of detecting an animal expressed as a function of distance
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from the line or point, and possibly of additional covariates. A simple distance sam-
pling estimator is obtained from (1) by using these estimated detection probabilities
for the quantities p̂i , and assuming that there are no problems with availability or false
positives.

2.1 Shipboard and Aerial Line Transect Surveys

Currently, the dominant form of distance sampling is line transect sampling. Most
large-scale surveys are conducted from aircraft or ships, although some must neces-
sarily be conducted at ground level, for example where forest canopy precludes aerial
survey, or underwater, where the species of interest may not be sufficiently detectable
from the surface. We expect to see large changes in how large-scale surveys are con-
ducted, as a result of technological advances.

Most large-scale line transect surveys conducted by human observers on-board
aircraft or ships are likely to be replaced in the near future by aerial surveys using
high-resolution imagery (Fig. 1). This change has already started, especially in the
context of seabird and sea mammal surveys in areas where offshore windfarms have
been proposed or constructed (Buckland et al. [11]). Acoustic surveys will also play
a key role for surveys at sea aimed at animals that produce sounds, such as cetaceans
(Marques et al. [56]). These may be conducted using towed hydrophone arrays (e.g.
Lewis et al. [52]) or drifting instruments (Barlow et al. [3]). Analytical approaches
that allow the integration of multiple data sources, for example visual data and passive
acoustic monitoring (PAM) data, to generate a single density estimate will be needed
(e.g. Frasier et al. [29]). Furthermore, piloted aircraft are likely to be replaced by pilot-
less long-range drones, assuming that legislation on the operation of drones allows.
The advantages of these changes are clear:

• Safety of observers and pilot is not put at risk.
• The survey generates verifiable data, so that independent analyses can be conducted
on the recorded images. The raw data have not been biased by an observer’s inter-
pretation of what was detected.

Fig. 1 Representation of an aerial survey using cameras. The cameras capture images extending a distance
w either side of the central transect line. In this survey, there was a forward-facing camera and a backward-
facing camera, providing double-platform data for estimating availability of diving marine mammals with
short dive duration
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• The surveys can be conducted at higher altitude than is possible with human
observers, thus avoiding animal disturbance.

• Thermal imaging cameras can allow surveys to be conducted over habitats where
animals are difficult to see from the air, such as forest canopy and scrublands.

• Detectability of animals is unlikely to fall off with distance from the line, as distance
from the high-altitude camera changes little with distance from the line.

• The camera is slung below the aircraft, and so visibility directly below is clear. This
is not true for observers on-board aircraft, which complicates the analysis of line
transect data from aerial surveys using observers.

Technological advances are needed for these changes to become widespread. A
camera surveys a narrower strip below the aircraft than does a human observer. This
can be circumvented by increasing the altitude of the drone, and by having multiple
cameras, each covering its own survey strip. The equipment on-board the drone must
be able to either store or transmit many large, high-resolution images. Reliability and
range of drones needs to be high, while the cost needs to come down. Military-style
drones can have ranges of several thousand kilometres, a capability that would be of
value for surveying large and remote areas.

Equivalently, at sea, vessels might be replaced by underwater autonomous vehicles
(e.g. Suberg et al. [77]), gliders or drifting buoys, especially so for cetaceans that
produce sounds that might make them far more detectable acoustically than visually.
We expect developments to be required for obtaining reliable distances from PAM
detections, both at the hardware level (e.g. sets of sensors capable of estimating dis-
tances to individual sounds) and at the analytical level (obtaining distances from a
vertical detection angle, e.g. Barlow et al. [3]). Analytical three-dimensional distance
sampling methods, such as those developed by Cox et al. [20], can be used to handle
non-uniform distribution in the water column.

Going a step further, satellite images are starting to be used to assess wildlife
abundance. Fretwell et al. [30] estimated the total population size of emperor penguins
from satellite imagery. Since the satellite survey of southern right whales carried out
by Fretwell et al. [32], several surveys of whale populations have been carried out,
as reviewed by Höschle et al. [42]. Other species surveyed using satellite imagery
include albatrosses (Fretwell et al. [31]) and elephants (Duporge et al. [23]).

There are statistical challenges from using high-resolution images. Superficially,
it may appear that the problem of estimating abundance is made easier, as there is
no need to model the detection function. However, not all animals within the area
covered by an image may be available for detection when the image is recorded.
Whales may be below the surface, and terrestrial animals may be under tree canopy or
underground. Especiallywith satellite images, some animalsmaybe obscured by cloud
cover. Thus availability of animals may need to be modelled. In some circumstances,
this might be achievable internal to the survey. For example, a drone might have one
camera aimed forwards, while a second camera is aimed backwards. The two cameras
then search the same area but at slightly different times. Stevenson et al. [74] and
Borchers et al. [6] developed methods to analyse such data while taking account of
the uncertainty in identifying duplicate detections across the two sets of images. This
strategy can be effective for animals that are intermittently available, with just short
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gaps of unavailability, for example porpoise that surface frequently. Other solutions
include having two aircraft in tandem (Hiby andLovell [38]), or having a single aircraft
conduct two passes over the same strip (Hiby [39]). A terrestrial or shipboard survey
may be necessary to estimate availability in some circumstances. In some studies,
radio or satellite tags are attached to a sample of animals, and these may provide data
for estimating availability. Given that availability may vary by location and season,
such data should be collected synchronously with the survey if at all possible. If the
probability of detection needs to be estimated separately from availability, this can be
done for example using double-platform data, with possibly different technologies on
each platform, such as visual and infrared cameras.

Perhaps the biggest challenge for the analyst is to process the large number of
high-resolution images. Both statisticians and computer scientists can contribute here.
There are usually two stages involved in analysing the images. The first is to use a
relatively rapid algorithm to identify whether an image has any objects of potential
interest. A good algorithm will eliminate a large majority of images for most surveys,
so that the volume of data for analysis at the second stage is much reduced. The
second stage uses a more time-intensive algorithm to identify what the objects in the
image are. For example, the first stage might identify that there are marine mammals
in an image, while the second stage might identify the species of marine mammal.
A related challenge is to estimate the false positive and false negative rates, allowing
the abundance estimate to be corrected. This might be achieved by having experts
interpret a subset of images, allowing calibration factors to be estimated.

Examples of using deep learning methods to identify animals from images include
Chabot et al. [18] for polar bears and Norouzzadeh et al. [60] for animals in the
Serengeti.

2.2 Camera-Trap Distance Sampling

Given that ground-level surveys can often be conducted at low cost, we anticipate that
such surveys will remain popular. However, we also expect many such surveys to be
replaced by point transect surveys for which either camera traps or acoustic detectors
will be placed at the points. In both methods, a point transect survey design is used,
but cameras or acoustic detectors replace human observers. This creates a problem
for standard distance sampling methods, which essentially assume that animals are
frozen in place while locations relative to the point are recorded. If the animals are
moving around, the longer the recording period at a point, the more animals will be
detected, generating upward bias in abundance estimates. This is usually a minor issue
for surveys carried out by observers, who only remain at a point for a few minutes, but
cameras or acoustic detectors typically remain in place for long periods. Thus snapshot
methods (Buckland [10]) are used. The term ‘snapshotmethod’ indicates that locations
of detected animals are recorded at snapshot moments—instants in time, as distinct
from detections within a prolonged time period.

For camera-trap distance sampling, the simplest approach is to use time-lapse pho-
tography, in which images are taken at pre-defined snapshot moments. Then provided
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distances of animals in images can be estimated, analysis follows exactly as for con-
ventional point transect sampling, treating the snapshot moments as multiple visits to
each point.

Formany surveys, especially those forwhich animals can only be detected in images
if they are close to the camera (such as in rain forest), the time-lapse method generates
many images, but with very few detections of target animals. Thus, usually cameras
with sensors to detect animal movement are used. Then, images are only taken when
there is at least one animal moving in the sensor detection sector. This necessitates a
few changes to the conventional distance sampling method (Howe et al. [43]). First, to
avoid bias, the snapshotmoments need to be close together, so that an animal is unlikely
to pass right through the sensor detection sector between two successive snapshots.
Second, the nominal snapshot moments need to be defined, given the images available.
If video is taken, and snapshots are defined to be say every four seconds, then the video
can be used to determine where the animal is relative to the point, for as long as it
remains in the sensor detection sector, at each snapshotmoment. Otherwise, position at
snapshot moments may need to be estimated from the images available. The nominal
snapshot moments continue once every four seconds (say), even when no animals
are present, so time that the camera is operating must be recorded, from which the
number of nominal snapshot moments can be calculated. The same animal may be
recorded several times as it passes through the sensor detection sector, so data tend to
be over-dispersed, and this needs to be allowed for in the analysis (Howe et al. [44]).
One further complication is that an animal may be in the sector but without triggering
the sensor, for example because it is resting (not moving), or is underground or hidden
in a tree. Thus, again, availability must be estimated. This can often be done without
collecting additional data, provided it can be assumed that all animals are active and
detectable at the time of day when activity is greatest (Rowcliffe et al. [68]).

Estimation of distance of animals from the camera can be a time-consumingprocess.
Laser rangefinders are now routinely used in many terrestrial surveys using observers,
and autofocus cameras readily adjust focus to the distance of the object from the
lens. An apparently modest advance would be to develop a camera to automatically
record the distance to any animal that triggers the movement sensor, at the moment the
sensor is triggered. Linked to this, a statistical innovation would be a model for animal
movement, so that the positions at which an image of the animal is taken are used to
fit a model of its track through the sensor detection sector. (Many animals occur in
groups, so such a system should be capable of tracing each animalwithin a group.) This
will allow distances from the camera at the nominal snapshot moments (which do not
necessarily correspond to themoments atwhich images are taken) to be estimatedmore
easily and reliably. Another useful technical innovation would be to develop camera
traps that are less likely to cause a response in the target animals, for example with
quieter camera action, more camouflaged cameras, and use of odour-free materials.
With current cameras, animals of many species often respond by approaching the
camera (and perhaps damaging it), or avoiding the camera, or simply watching it for a
period. This generates a biased set of detection distances, and hence biased abundance
estimates.

Automated identification of any animal that triggers the camera will avoid the
need for expert observers to examine each image. As with aerial images, calibration
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may be needed, with a subset of images examined by expert observers, to correct for
false positives. (Detection function modelling, as for conventional distance sampling,
together with availability modelling, will correct for false negatives.)

One difference from aerial surveys is that the first stage of analysis of images from
aerial surveys is not needed here, as there is no image corresponding to the large
number of nominal snapshot moments for which the sensor was not triggered.

2.3 Acoustic Distance Sampling

In acoustic distance sampling surveys, an acoustic detector, or preferably an array of
acoustic detectors, is placed at each point of the design. Although distances can in
principle be estimated by modelling the volume of a sound as a function of distance,
such estimates may be subject to large errors, for example because calls may not be
omnidirectional, or habitat and topology affect the volume and direction of sounds
arriving at the sensor. Use of a small array of synchronized detectors allows distances
to be estimated by triangulation (Blumstein et al. [4]).

In principle, standard point transect sampling methods could be used to analyse the
data. However, this approach makes quite restrictive assumptions: we must assume
that repeat detections of a single animal can be identified, and that we can measure
the distance from the point to the average location of the animal during the period that
the acoustic sensors are in place. Although a snapshot approach could be adopted to
avoid bias from animal movement (Buckland [10]), it is more difficult to determine
where an animal is at each snapshot moment from intermittent sound than it is from
continuous visual images.

In practice, it is usually better to treat the individual cue (call or song) as the
observation, rather than the animal. This cue-counting approach is not biased when
animal movement is non-responsive (independent of the sensors). The distance to be
estimated is the distance to each detected cue, rather than to the centre of a cluster
of detections of a given animal. A disadvantage of the approach is that the cue rate
(average number of cues per animal per unit of time) must be estimated concurrently
with the acoustic survey. Thus a representative sample of animals must be monitored,
to determine how many cues they produce in a given period of time. As we just need
the average cue rate across animals, a relatively small sample of representative animals
typically gives adequate precision. However, since we need to estimate the cue rate for
the time and space in which the survey takes place (Marques et al. [57]), we anticipate
studies investigating factors that affect cue rates to become increasingly common.

A technological development that would bewelcome is tags of long duration, giving
the potential to link cue production rates to external factors such as time of year and
behaviour. Another technological advance required is tags that allow unambiguous
identification of individual animals, which is particularly difficult for animals with
low-frequency calls, such as baleen whales (Stimpert et al. [75]). Both of these are
key to reliable estimation of cue rates from tag data, and hence to further development
of cue-counting approaches.

The design for a cue-count survey should be randomised just as for a conventional
distance sampling survey. Animals do not need to be detectable from multiple points
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of the design, so the points can be widely spaced, allowing surveys of large study areas
to be carried out.

Cue counting was originally developed for surveying whales by detecting their
blows while travelling along transect lines (Hiby [37]), but it can equally be carried
out from fixed points (Buckland [10]), which is a more practical option for acoustic
surveys.

To avoid the need for an expert to listen to all recordings, automated methods are
needed. As with the analysis of images, there are typically two stages in the analysis
of sound recordings. First, calls need to be isolated from background noise and other
calls, and second, the isolated calls must be identified. An algorithm can be trained
using a sample of calls of known identity, and within a survey, the results might be
calibrated against a subset of recordings analysed by experts.

A wide variety of automatic detectors has been used, considering sound character-
istics in both the time and the frequency domain. Various methods have been adopted,
such as cross-correlation and peaks-above-threshold approaches. As this is a classifi-
cation task, the development of machine learning approaches has recently taken off
and seems promising (see, e.g. Greener et al. [34] for a review of machine learning in
biology). In particular, representing the sound as a spectrogram has recently opened
the door to the use of convolution neural networks to identify sounds automatically
(Stowell [76]).

Harris et al. [36] explore the ability to use Ocean Bottom Seismometers for den-
sity estimation using large-scale passive acoustic monitoring, and active development
of methods for estimating distances to detected sounds from such seismometers is
ongoing.

2.4 Other Distance SamplingMethods

Technological innovations open up opportunities to develop new survey methods.
These often allow assessment of populations that previously could not be reliably
monitored. We include a few examples here of variations of distance sampling that
have been made more practical by technological advances.

Indirect distance sampling surveys (Laing et al. [50]), in which objects produced by
animals are recorded, include line transect surveys of dung (e.g. deer or elephants) or
nests (e.g. apes). Standard line transect methods are used to estimate density of these
objects. To convert these estimates of object density to estimates of animal density and
abundance, we need to estimate two further quantities: the mean deposition rate (on
average, how many objects per unit of time are generated per animal in the lead-up to
the line transect survey); and the mean decay rate of objects, which is the reciprocal
of the mean time for an object to decay. Technology can help to estimate both these
quantities. Electronic monitoring of a sample of animals can estimate deposition rate
(for example by attaching a tiny camera to the animal), and GPS can be used to help
observers efficiently relocate objects being monitored to estimate decay rate.

Trapping and lure point transects (Buckland et al. [14]) provide another variation
in point transect sampling. A trap or lure is placed at each point of a point transect
design, and the number of animals arriving in a fixed time is recorded. The difficulty is
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that animals are deliberately drawn towards the survey devices, so we do not know the
size of the area that these animals are drawn from. To resolve this problem, the survey
is supplemented by trials involving a sample of animals whose locations are known
when the traps or lures are set, identifying which of those animals are subsequently
recorded at the trap or lure. We can then model the probability of detection of an
animal at the point, as a function of its initial distance from the point (and possibly
of additional covariates). A bonus of this approach is that for the monitored animals,
we know how many were not subsequently detected, which allows straightforward
estimation of the detection function without having to assume that animals at zero
distance are detected with certainty. Technology can provide the lure, for example by
playing calls to attract animals (Summers and Buckland [78]; Okot Omoya et al. [62]),
or allow tracking of the sample of animals involved in trials (Potts et al. [65]). Again
GPS makes this type of survey much easier to implement.

Three-dimensional distance sampling surveys have been used for marine sonar
surveys (Cox et al. [20]). We expect such methods to become more widespread,
for example to estimate abundance from bird radar surveys (Buckland et al. [13]:
195–198). In such surveys, density varies with vertical height or depth, and this vari-
ation must be modelled.

Where non-responsive animal movement is sufficient to generate bias in distance
sampling estimates, a movement model can be built into a distance sampling analysis
(Glennie et al. [33]). We anticipate further advances in this area, for example to exploit
data from GPS tags placed on a sample of animals.

3 Spatial Capture-Recapture

Capture-recapture methods were originally developed for scenarios in which a sample
of animals is caught in traps, marked, and released, and recaptures are attempted on
one or more further occasions. In the classical formulation, the spatial location of the
traps is ignored in the survey design and analysis. For spatially organised species,
including those that are territorial or restricted in movement, spatial capture-recapture
(SCR) methods are of greater value (Efford [25]; Borchers and Efford [5]; Royle and
Young [71]). In particular, the effective area covered by the survey can be estimated,
so the SCR method enables estimation of animal density. This contrasts with classical
capture-recapture, for which the size of the area from which the captured animals
are drawn is not estimable from the survey. Further, modelling the impact of spatial
location on detectability is useful formitigating the heterogeneity that plagues classical
capture-recapture abundance estimates (Link [53]).

3.1 Camera-Trap Surveys

Camera-trap spatial capture-recapture surveys (Fig. 2) have become an important tool
in the management of many charismatic megafauna. There are important differences
between camera-trap spatial capture-recapture surveys and camera-trap distance sam-
pling surveys. Spatial capture-recapture has two advantages. First, the traps do not need
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Fig. 2 Snow leopard inspecting a camera trap. Spatial capture-recapture is widely used to analyse images
captured of animals for which individuals have unique natural markings, such as snow leopards, tigers and
jaguars. SLT-NCF (Snow Leopard Trust - Nature Conservation Foundation)

to be randomly located; provided they cover the study area adequately and sample an
adequate range of distances from animal activity centres, they can be positioned where
they are most likely to detect target animals. Second, the analyses can yield maps of
estimated territories of detected animals, with associated uncertainty, in addition to an
abundance estimate.

SCR also has two disadvantages. First, we need to be able to identify individuals in
the target population, to determine atwhich traps each animal is detected. Second, traps
must be sufficiently close together that we can expect many animals to be detected at
multiple traps, while being separated enough that an animal detected by one camera is
not certain to be detected by all cameras.When surveying large regions, the need to put
cameras sufficiently close together leads to designs similar to those for point transect or
camera-trap distance sampling surveys, but with individual cameras at points replaced
by arrays of cameras. The number of cameras per array is a design variable; methods
have been developed to optimise the number and placement of cameras (see Durbach
et al. [24], and references therein).

The technological advances that would be useful are the same as for camera-trap
distance sampling, except that the spatial capture-recapture approach does not need
estimates of the distance of the animal from the camera. There is, however, an addi-
tional requirement for automated image analysis, as we now need to be able to identify
individual animals from the images, rather than simply to identify the species. This is
a much more challenging task, and methods currently available have variable perfor-
mance—see Matthé et al. [58] for a recent review of methods.

For many species, it seems unlikely that automated image analysis will produce
error-free individual identification in the foreseeable future. Similar to the situation
with respect to species identification in distance sampling camera surveys, SCRmeth-
ods are designed to deal with false negatives in identification, whereas methods for
dealing with false positives largely remain to be developed. The problem of incorrect
individual identity assignment is more challenging than erroneous species identifica-
tion, because every incorrect identity assignment changes the capture history not only
of the individual to which it is assigned, but also of the (unknown) individual to which
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it really belongs. When a photograph fails to be matched to other photographs of the
same individual, a new capture history called a “ghost” history is created, thereby over-
counting the number of distinct animals in the sample and resulting in an overestimate
of population size.

Oneway of dealingwith this is to discard detectionswhose identities are not certain,
but this sacrifices sample size. A more efficient way is to keep these detections but
assign them no identity (Jimenéz et al. [45]). There are also SCRmodels called “spatial
mark-resight” models, developed first by Sollmann et al. [72], that require only some
individuals in the population to be identifiable, and “spatial partial identity” models
for dealing with partially identified animals (for example when photographs of left
and right flanks cannot be identified as being from the same animal), first developed
by Augustine et al. [1]

The development of statistical methods to deal with identification uncertainty in
SCR is already a growing area, and we anticipate that this and integration with auto-
mated species identification methods will be one of the main growth areas for SCR
methods. There are current ongoing efforts to fully automate the process going from
raw images to density estimates via SCR methods, and when the associated hurdles
are overcome, these surveys might become even more widespread.

3.2 Acoustic Surveys

In camera-trap surveys, the observational unit is an individual animal, whereas in
acoustic surveys it is more commonly a call of an individual animal. In distance
sampling surveys this has little impact on the survey design, so sensor placements
for acoustic distance sampling surveys follow largely the same design as those for
camera-trap surveys. However, for spatial capture-recapture, acoustic designs will
typically differ from camera-trap designs because spacing needs to be determined
by sound propagation rather than by animal mobility. Acoustic sensors need to be
placed to ensure that a single call is typically detected by multiple sensors, but not
by all sensors, so detector spacing is species-dependent. For example, recent surveys
of gibbons have detectors placed hundreds of metres apart (Kidney et al. [48]), while
in surveys of frogs, they are only a few metres apart (Fig. 3; Measey et al. [59]). As
for camera-trap SCR surveys, acoustic SCR surveys require multiple sensors at each
sample location.

Unlike acoustic distance sampling surveys, it is not necessary to estimate distances
to calls, but if estimates of distance, received sound level and/or bearing are available
then inference can be greatly improved (Borchers et al. [7]). This auxiliary data also
helps determine whether calls recorded by different sensors are the same call. If calls
are to be linked to individual animals, it similarly helps identify which detections arose
from which animals.

For acoustic surveys in remote locations, whether distance sampling or SCR meth-
ods are used, it would be useful to develop solar panel or bio-battery power sources for
acoustic sensors. Methods for precisely synchronising the clocks on recorders within
an array are also needed, as even a small amount of clock drift can make it difficult to
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With SS and TOA
With SS
With TOA
Without SS or TOA

5 m

Fig. 3 Representation of an acoustic survey of moss frogs (Arthroleptella lightfooti) in South Africa. Spatial
capture-recapture allows 95% contours for a calling frog’s location to be estimated. In this example, a call
was detected from three of the six acoustic sensors, indicated by a circle around the cross. Contours obtained
from four models are shown: (a) model with covariates signal strength (SS) and time of arrival (TOA); (b)
model with covariate SS only; (c) model with TOA only; and (d) model without covariates

identify whether or not calls received at multiple detectors are the same call. A particu-
lar challenge is to develop data transfer technology capable of transmitting recordings
and associated data from field sensors, perhaps to a drone passing overhead, which
is difficult because acoustic survey files tend to be large. One solution might be to
develop on-board call identification software on the acoustic sensors themselves, to
reduce the volume of data that needs to be transferred. Acoustic recorders typically
produce data files that are orders of magnitude larger than those produced by camera
traps, so data transfer and storage are significant considerations.

3.3 Transects, Area Searches and Genetic SCR

SCR methods can also be used when observations are continuous in space, rather
than restricted to discrete sensor points, for example arising from sampling along
transect lines or searching an area (Royle and Young [71], Efford [26]). In these
cases, observations are often of animal signs such as scat, from which identities may
be obtained using genetic identification methods, rather than of animals themselves.
If, when surveying along transects, animals themselves are observed, and distances
to them can be obtained, then SCR survey methods reduce to mark-recapture line
transect survey methods (Borchers et al. [7]). An interesting example by Pirrota et al.
[64] conceptualizes photo-ID data as an SCR search, where grid cells over which the
boat is travelling are considered active traps while the boat is there on-effort, and

123



Journal of Statistical Theory and Practice (2023) 17 :20 Page 13 of 22 20

are switched off while the boat is away. Further similar analytical developments to
conceptualize specialized surveys into SCR approaches might arise in the future.

4 Other SurveyMethods

4.1 Genetic Surveys

There are two main approaches to abundance estimation using genetic surveys. In the
first approach, DNA samples are used as the method of identifying individual animals
in capture-recapture studies (Fewster [28]). As long as animals can be identified accu-
rately, capture-recapture or SCR analyses can proceed as usual. The second approach
is called close-kin mark-recapture (Fig. 4), and produces estimates of population size
by modelling levels of relatedness among the animals in the sample, based on the
rationale that a sample from a small population will contain a higher proportion of
close relatives than one from a larger population (Bravington et al. [8]; Hillary et al.
[40]).

For the first approach of capture-recapture, multiple samples from individual ani-
mals are needed, so DNA samples must be obtained without changing the animal’s
behaviour or causing distress. On the other hand, for close-kinmark-recapture it is pos-
sible to estimate population size from just one sampling event, allowing the method to
be applied to harvested populations such as fish where the sample consists of animals
caught for food. In either approach, DNA samples are processed in the laboratory to
reveal a set of genetic reads known as the genotype for each one. In principle, each

Fig. 4 Concept plan for close-kin mark-recapture in a simple scenario where adults and juveniles are dis-
tinguishable and there is no mortality. A The sample consists of four adults (blue) and seven juveniles
(orange). Genetic profiling reveals five parent–offspring relationships within the sample, shown by dark
blue arrow links. B Each juvenile has two parents, so the seven juveniles in the sample imply there are
14 arrow links to be found in the wider population. The sample detected five of these 14 links (dark blue
arrows). Unsampled links are shown with pale blue arrows. C The four sampled adults supplied 5/14 of
the links known to be present, so the estimate of adult population size is 4/(5/14) = 11.2 adults. Estimated
adults are shown in grey. The estimate acknowledges that some of the unsampled adults will be parents to
more than one juvenile
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individual’s genotype should be sufficient to identify it uniquely, with the exception of
identical twins. However, in practice the creation of genotypes can be error-prone, so
identification of individuals or close relatives is not always straightforward (Taberlet
and Luikart [80]).

Genetic samples can be high-quality tissue or blood samples, which usually give
reliable informationbut create challenges in sample collection; or poor-quality dropped
samples such as scat or feathers, which can be collected non-invasively but contain low
quantities of DNA and generate genotypes with a high level of error. For high-quality
DNA sampling, appropriate field protocols depend on the species and create some
technological challenges. Sampling cetaceans is often done using biopsy darts that are
fired at the animal using a device such as a veterinary rifle (Carroll et al. [16]). The darts
glance off the animal’s thick blubber without causing distress, scooping up a small
amount of tissue in the process, and must then be retrieved from the water. Another
approach is to acquire DNA by sampling cetacean blows using drones (Robinson and
Nuuttila [66]). Some terrestrial animals shed hairswith follicles attached, inwhich case
high-quality DNA can be obtained using simple devices such as hair snags or sticky
tapes (Horsup et al. [41]). An opportunity for future innovation would be to conduct
genetic capture-recapture indirectly using blood parasites such asmosquitoes, leeches,
or ticks that feed on the host species of interest. Sampling parasites, rather than the
hosts themselves, could offer a non-invasive method of obtaining high-quality DNA
if suitable sampling protocols can be devised.

Low-quality DNA samples include droppings and scat, hair without follicles, and
feathers. In some cases these can be collected according to a formal survey design,
for example a spatial capture-recapture design can deploy hair traps instead of camera
traps (Efford et al. [27]). However, droppings are more likely to be available oppor-
tunistically, which creates the challenge of finding them. Trained dogs can be helpful
in finding scat, but dog presence may cause distress to the target animals and dogs
must be trained not to follow scent trails leading to the animal itself. Robots with the
capability to locate and collect scat would be an exciting innovation for some species.
In marine environments, whale scat can be collected from floating faeces shortly after
defaecation (Carroll et al. [17]) and contains sufficient DNA to identify individuals.

A key area of innovation for genetic surveys is laboratory methods for creating
genotypes. A genotype is a sample of genetic reads from the individual’s DNA, taken
at positions on the genome calledmarkers that can be accurately located for all individ-
uals. Until recently, most studies used a type of genetic marker called microsatellites;
these are regions of DNA where a short sequence is repeated multiple times and the
number of repeats varies among different individuals. Microsatellite genotypes are
typically constructed using 10 to 20 markers. For high-quality DNA samples, each
marker typically has an error or dropout rate of a few per cent, allowing most samples
to be matched unambiguously to individuals (Vale et al. [81]; Fewster [28]). However,
the error rate is much worse for low-quality DNA samples, so matching of samples to
individuals can be problematic (Wright et al. [82]).

More recently, laboratory advances have focused on a different type of genetic
marker called SNPs (single nucleotide polymorphisms) which are individual genetic
bases that vary among individuals. Each SNP marker typically has only two variant
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alleles, but thousands of markers can be extracted at low cost using modern labora-
tory methods. For high-quality DNA samples, SNP genotyping largely resolves the
problems of identifying individuals and close-kin, because even an error rate of a few
per cent per marker still leaves sufficiently many matches to establish identity and
relatedness of samples (Hillary et al. [40]). However, innovations are still needed for
low-quality DNA samples. At a laboratory level, one enhancement is to design marker
panels that are robust to degradation of DNA, for example by finding markers that
only rely on short strands of DNA. At a statistical level, methods that can tolerate
a level of error without biasing the analysis would save considerable time and cost
in laboratory processing. Multiple genotyping of each sample is often practised for
low-quality DNA, and this can be used to provide information on genotyping error
rates (Wright et al. [82]).

In addition to genetic capture-recapture and close-kin mark-recapture, there have
also been recent attempts to estimate abundance using environmental DNA (eDNA),
based on the idea that the amount of eDNA collected from a species should be informa-
tive about its abundance (Lacoursière-Roussel et al. [49]; Spear et al. [73]). Although
eDNA analysis is clearly suitable for occupancy models, as described below, its suit-
ability for abundance estimation is still under investigation, and results have so far
been more promising in aquatic environments than terrestrial environments (e.g. Di
Muri et al. [22], Breton et al. [9]). Nonetheless, if the approach proves suitable for
some taxa, we anticipate new analytical procedures will be needed, both for DNA
processing and for statistical analysis of the resulting data.

4.2 Occupancy Methods

Occupancymethods involve repeat visits to sites, recording which species are detected
on each visit (MacKenzie et al. [55]). Species presencemight be recorded by observers
seeing or hearing animals, or by animal sign, camera traps, or acoustic detectors.
Recent interest in using environmental DNA (eDNA) for occupancy analysis has
sparked development of statistical methods to deal with false positives in species
detections (Griffin et al. [35]; Buxton et al. [15]).

Occupancymethods give estimates of the probability that a given species is detected,
and temporal trends in this probability may allow inference on whether the species is
declining or increasing. A negative slope to the trend is likely to indicate a decrease
in abundance but cannot be assumed to indicate the rate of change in abundance. For
example, a species might halve in abundance, and yet remain easily detectable at all
siteswithin a survey, inwhich case the probability of detectionmay showno downward
trend. Royle and Nichols [70] developed a simple binomial model to relate detection
probability to abundance, based on the assumption that more abundant species are
more likely to be detected. Their approach has been found to give biased estimates of
abundance which nevertheless correlate strongly with estimates that are known to be
unbiased, so they can often be used to infer trends in abundance (O’Brien et al. [61]).

In many surveys, it is not practical or cost-effective to estimate abundance, but the
presence/absence data are readily recorded. Strictly, ‘absence’ means that a species
was not recorded on a given visit, which does not necessarily mean that the species
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was absent from that site at the time. Thus, it is important to have methods that
reliably model such data. We expect to see increased interest in such approaches,
as they potentially allow biodiversity trends to be quantified both for taxa that are
not amenable to more sophisticated data recording, and in countries that do not have
the resources to conduct more sophisticated surveys. A priority therefore is to develop
methods that make less restrictive assumptions. There may also be merit in developing
hybridmethods. For example, a small number of sitesmight be surveyed usingmethods
that allow direct estimation of abundance, together with less rigorous data from many
more sites gathered by citizen scientists (Lepczyk et al. [51]).

4.3 N-Mixture Models

N-mixture models (Royle [69]) are popular because they allow estimation of abun-
dance when only repeat counts are available from a sample of sites. As with occupancy
methods, technology such as camera traps and acoustic detectors increases the diver-
sity of surveys that can potentially be analysed using N-mixture models.

Although the original approach has been extended (Dénes et al. [21]; Chandler and
Royle [19]), there is very limited information in a series of counts to allow reliable
separation of abundance and detectability (Barker et al. [2]), and themethod is sensitive
to failures of the strong assumptions necessary to allow estimation of the model’s
parameters (Link et al. [54]). Barker et al. [2] recommend that users gather auxiliary
data for estimating detectability, to improve reliability of the abundance estimates, and
we expect methodological developments that exploit this approach.

4.4 Random Encounter Models

Random encounter models (Rowcliffe et al. [67]) were developed for estimating ani-
mal abundance from camera-trap data, when animals are not individually identifiable.
They assume that animals move randomly and independently of each other, and use
functional relationships between encounter rates, the dimensions of the camera’s detec-
tion zone, and the speed of animal movement to estimate the density. The approach is
generalized and given a stronger methodological basis by Jourdain et al. [47].

Although Jourdain et al. [47] allow animal speeds to vary, and develop an integrated
modelling approach, they do not explicitly incorporate an animal movement model.
Repeat detections of the same animal from a camera trap provides some information
on movement, provided each detection can be accurately located, and so this gives the
potential for modelling animal movement within the survey region. Such modelling
will be enhanced if movement data are available for a few tagged animals. Palencia
et al. [63] compare REM, CTDS and SCR approaches and conclude that camera traps
with fast response and recovery times are important for all approaches, hinting at the
need for further hardware development, but also for the need to develop analytical
frameworks to deal with potential reactions to the camera traps.
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4.5 Citizen-Science Surveys

Citizen-science surveys (Lepczyk et al. [51]) have gained rapidly in popularity in
recent years, partly as a result of technological advances. Smart phones allow citi-
zen scientists to submit records through apps, and photographs may be attached for
verification. Apps that identify species from photographs (such as iNaturalist, https://
www.inaturalist.org/) and sound (such asBirdNet, https://birdnet.cornell.edu/) are also
improving rapidly. Records collected in this way mostly involve purposive sampling,
with no formal survey design. Increasingly however, such surveys are becoming more
structured, and we expect this trend to continue, with designed surveys over wide
regions becoming more commonplace.

Another contribution made by citizen scientists to wildlife monitoring is crowd-
sourcing the review of images or sound-files for species of interest. An example is the
Snapshot Serengeti project (Swanson et al. [79]) which generates large numbers of
images recorded by camera traps. Citizen scientists access the project website, receive
some training, and are then qualified to review images and record the animals shown.
These citizen scientists can be located anywhere, creating considerable processing
capacity. Multiple citizen scientists review any particular image, so images only need
to be sent for expert review if there is significant disagreement amongst them. It should
be noted however that deep learning techniques have been developed that achieve
similar levels of performance in this project (Norouzzadeh et al. [60]).

We anticipate that the number and variety of surveys that utilise new technology to
involve citizen scientists will continue to expand rapidly, with many of these surveys
gaining designed structures that will allow more solid inference. We also expect such
surveys to become increasingly international, with some reaching global extent.

The contributions of citizen scientists to biodiversity monitoring over large regions
are discussed by Buckland and Johnston [12], and the challenges facing those who use
citizen-science datasets to monitor biodiversity are discussed by Johnston et al. [46].

5 Discussion

Technology is increasingly the driver for innovation in statistical ecology. Statisticians
need to be aware of technological advances, both existing and potential, to reduce the
risk of expending effort in developing methodologies that quickly become obsolete.

Currently, there is little if any collaboration between the engineers who create new
technologies, and the statisticians who develop the associated methodology. Statis-
ticians typically develop methods for pre-existing technologies, expending effort on
dealing with technological limitations that could potentially have been avoided had
there been statistical input at the design stage.Meanwhile engineers often have limited
understanding of the analytic value of different technological advances, in terms of
their potential to deliver precise estimates of abundance or other parameters. Often,
sensor equipment is designed with no analytic method inmind at all, leading tomasses
of unused data and unfulfilled potential.

Ideally, the design of new equipment or algorithms for creating data should be a
collaborative venture between the technologists building the equipment, and statistical
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experts who can ensure the resulting datasets are sufficiently informative and robust
to address the questions of interest. Many of the technologies we have described here
require statistical input at the design stage. For example, the two-camera surveys in
Sect. 2.1 described by Stevenson et al. [74] andBorchers et al. [6] require a sequence of
images of the samegeographic location that are separated in time.Creating such images
is an engineering challenge, but statistical input is needed to decide specifications such
as a suitable time lag between images, which can impact heavily upon the engineering
design. Other examples include the design of acoustic equipment, in which some
design features such as clock synchronisation or measures of direction may bring
significant analytic value, whereas others such as measures of sound intensity may be
of little consequence; or algorithms for identifying detections in acoustic recordings
or images, for which it appears not to be widely known among algorithm designers
that false positives are considerably more problematic from an analytic perspective
than false negatives. Statistical collaboration in the design, specifications, and piloting
of new technologies will help to ensure that new developments reach their analytic
potential, and will expedite faster and more efficient advances in the future.
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