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Abstract

Density estimates for animal populations often inform conser-

vation and management decisions. Many methods to estimate

animal density exist but deciding between competing alter-

natives traditionally has depended upon assessing multiple

factors (e.g., precision, total cost, area sampled) independently

and often in an ad hoc manner. Cost‐effectiveness analysis is a

tool that economists use to decide objectively between

competing alternatives. We extend cost‐effectiveness analysis

to simultaneously integrate precision and per‐area cost of

sampling when selecting between competing techniques used

to estimate animal density both after a single application of a

method and across several applications of capital equipment.

Our extension allows for weighting of factors that may vary

with the objectives and constraints of decision makers. We

apply our extension of cost‐effectiveness analysis to a case

study in which population density of white‐tailed deer

(Odocoileus virginianus) was estimated in 3 large management

units in Indiana, USA, using 3 competing distance‐sampling

methods: fecal‐pellet, camera‐trap, and aerial sampling. The

unweighted cost effectiveness of aerial sampling with color

and infrared sensors was usually superior after a single

application of each method and was always superior across
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several applications in differing landscapes. Pellet sampling

was the most cost effective after a single application of

each method in an agriculturally‐dominated management unit.

Although camera sampling has increased in popularity, the cost

effectiveness of camera sampling was poorer than the other

2 methods, even when allowing for potential future innova-

tions to streamline data processing. Cost‐effectiveness analysis

can be useful when selecting among competing methods for

monitoring animal populations of conservation and manage-

ment importance. The same principles used in our cost‐

effectiveness analysis can be used to decide between

competing alternatives related to any ecological monitoring

in addition to density estimation.

K E YWORD S

aerial sampling, animal conservation, camera sampling, camera trap,
decision making, fecal‐pellet sampling, vertical‐looking infrared,
wildlife management

Wildlife management benefits from estimates of animal density that are precise, cost‐effective, and representative

of the actual population (Williams et al. 2002). Such density estimates can inform conservation and management

decisions that regulate harvest (Devers et al. 2021, Tombre et al. 2022), diminish animal‐induced habitat

degradation (Spake et al. 2020), minimize wildlife‐human conflict (Conover 2001, Hussain et al. 2007), update the

protection status of rare species and critical habitat (Meylan and Donnelly 1999, Hawkins and Racey 2005), and

mitigate demographic responses to habitat or climate change (Péron et al. 2012, Lewis et al. 2015). Agencies often

must implement conservation and management decisions across large, functional jurisdictional units that span

hundreds to thousands of km2 (Sinclair 1991, Thiemann et al. 2008, Wallace et al. 2010) and thus require methods

of density estimation that are applicable to large spatial extents.

When managers consider potential methods for estimating animal density, the utility of those methods often

depends upon multiple factors including monetary costs and performance of the density estimator (Lyra‐Jorge et al.

2008, De Bondi et al. 2010, Laguardia et al. 2021). Monetary costs include capital costs (Glover‐Kapfer et al. 2019),

recurring expenditures from sampling operations (De Bondi et al. 2010), and labor required for data processing

(Delisle et al. 2021, Palencia et al. 2021). The performance of a density‐estimation method can be assessed by the

total area over which density is inferred (Laguardia et al. 2021) and the relative precision of the resulting density

estimate (Campbell et al. 2004). Although desired, bias is extremely difficult to assess for density estimates of

wildlife populations. Generally, factors associated with monetary costs and performance pertain to cost

effectiveness. In economic analyses, cost effectiveness is routinely presented as the ratio of the cost of an

alternative in dollars and some measure of performance of that alternative (Boardman et al. 2011).

Numerous studies have compared methods for estimating animal density (Parmenter et al. 2003, Urbanek et al.

2012, Anile et al. 2014, Keiter et al. 2017) but focused primarily on separately comparing the precision and total

cost associated with different methods. Other published comparisons of methods for estimating animal density

have referred to the total cost or total effort of a method as a measure of cost effectiveness. Therefore, as an aid to

resource managers, we extend simple methods of cost effectiveness analysis borrowed from economics to decide

between competing techniques used to estimate animal density. We then apply cost‐effectiveness analysis to
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evaluate 3 different field techniques to estimate the density of white‐tailed deer (Odocoileus virginianus) across 3

large management units in Indiana, USA, during late winter in 2021. Specifically, we assess the cost effectiveness of

fecal‐pellet, camera‐trapping, and aerial methods using distance‐sampling estimators. We also evaluate if and how

cost effectiveness differed for each method as a function of landscape composition.

METHODS

Cost‐effectiveness analysis

Cost effectiveness, CE , is the ratio of the cost, C , of an alternative and some measure of performance (i.e.,

effectiveness), E , of that alternative (Boardman et al. 2011), expressed as CE C E= / . Because wildlife managers

often desire density estimates across large areas over which management is implemented, cost per unit land area,

C a/ , is a relevant measure of costs. Consistent with past research, area, a, is the total area over which density is

inferred (Laguardia et al. 2021). Similarly, wildlife managers strive for density estimates that are precise to facilitate

detection of changes in density across repeatedly sampled areas and yield more confidence in single estimates.

Given this, a relative measure of precision, e.g., the inverse of the coefficient of variation (CV), is often the only

measure of effectiveness of interest regarding a method to estimate animal density (Skalski et al. 2005). Therefore,

a cost‐effectiveness ratio (sensu Boardman et al. 2011, p. 465) for this situation can be expressed as

CE
C a

CV
=

/

1/
(1)

which is simply the cost per unit land area standardized by relative precision. Cost is the total cost of the alternative,

including the capital cost of equipment and the recurring cost associated with collecting, processing, and analyzing

the data. When deciding among competing methods for estimating density, the most cost‐effective alternative is

the method with smallest cost effectiveness. Feasibility constraints on C (e.g., maximum allowance for personnel

hiring or vehicle purchasing) or minimum required precision (i.e., maximum allowance for CV) can be set a priori to

remove alternatives that do not meet the minimum standards of an agency.

Management often benefits from knowledge of spatiotemporal changes in density or abundance rather than a

single density estimate in time and space (Schaub and Kéry 2021). Consequently, many agencies estimate density

on a recurring seasonal or yearly basis, and thus invest in what is hoped to be long‐lived equipment. We therefore

calculate C as an annuity, or an annualized total cost. Formally, we assume that (1) capital equipment (e.g., camera

traps, aerial sampling equipment) is purchased at costCC and will lastN applications, (2) there are recurring costs for

each application of the method (e.g., labor to collect, process, and analyze the data), and (3) the same measure of

precision CV1/ is returned and area a sampled for each application of the method. In this case, the resulting

annualized cost is

C CC A r N FOC DPC= / ( , ) + + (2)

where FOC = field‐operating cost per application, DPC = data‐processing cost per application, A r N( , )

r r r= [(1 + ) − 1]/[ (1 + ) ]N N = the annuity factor (Campbell and Brown 2016), and r = a discount rate. We specify r

at 0.03, which is approximately equal to the real social rate of time preference in the U.S. and is consistent with

federal guidance on the choice of discount rate for economic analysis (Office of Management and Budget 2003).

Formally, this is the rate at which individuals are willing to postpone a present consumption in exchange for future

consumption and hence represents one measure of the opportunity cost or shadow value of invested funds.

Effectively, A r N( , ) takes a large up‐front capital expenditure and annualizes the capital expenditure, i.e., converts

the capital expenditure into an annual expenditure such that, if you were to take the present value of all

expenditures over the N applications of the capital's life at a discount rate of r , then it would equal CC .

COST‐EFFECTIVENESS ANALYSIS | 3 of 22
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We recognize that the relative importance of factors contributing to a method's cost effectiveness could vary

due to the management objective as well as political, financial, or bureaucratic constraints acting on a management

agency. To explicitly allow for variation in relative importance, we modified Equation 1 to allow for user‐specified

weights, denoted by w , for cost‐effectiveness input parameters such that

   ( )
CE

w FOC w DPC w a w

CV w
=

+ + ( )

(1/ )
anw

CC

A r N CC FOC DPC a

CV

( , ) (3)

where ∈w p CC FOC DPC a CV, { , , , , }p =manager‐specified weights for each parameter. To determine weights, an

importance score, ip, ranging from 0 (no importance) to 100 (critically important), can be given to each parameter in

Equation 3. Then a compositional weight for parameter p is given by w =p
pi

i∑

p

p
P

p=1
. When w = 1 for all P parameters,

Equation 3 simplifies to Equation 1.

Case study

Study area

We conducted sampling during the late winter of 2020–2021 in Regional Management Units (RMU) 3, 4, and 9 in

Indiana, USA (Figure 1; Swihart et al. 2020). Weather regimes in each RMU followed a 4‐season temperate pattern.

Regional Management Unit 3 (10,233 km2) was predominantly row‐crop agriculture (8,113 km2), with intermittent

patches of forest and grasslands (1,446 km2) and was located within the Central and Eastern Corn Belt Plains

ecoregions (U.S. Environmental Protection Agency 1997). Soils were predominantly silty loams. Within patches of

forest, common tree species included black cherry (Prunus serotina), black oak (Quercus velutina), black walnut

(Juglans nigra), pin oak (Q. palustris), sassafras (Sassafras albidium), and white oak (Q. alba), and common herbaceous

species included black snakeroot (Sanicula marilandica), enchanter's nightshade (Circaea lutetiana), garlic mustard

(Alliaria petiolata), sweet cicely (Osmorhiza claytonii), and Virginia knotweed (Polygonum virginianum). Private

property comprised 98.4% of the total area in RMU 3.

Unlike RMU 3, RMU 4 (16,187 km2) was predominantly forested (9,208 km2), contained far less agricultural

land (3,141 km2), and was located within the Interior Plateau, Interior River Valleys and Hills, and Eastern Corn Belt

Plains ecoregions (U.S. Environmental Protection Agency 1997). Soil types in the western two‐thirds of RMU 4

were bedrock soils with sandstone, limestone, and siltstone, whereas soils in the eastern third were primarily silty

loams. Forests were primarily mesic hardwoods that contained American beech (Fagus grandifolia), black oak, sugar

maple (Acer saccharum), tulip poplar (Liriodendron tulipifera), and white oak. Dominant herbaceous species included

common blue violet (Viola sororia), enchanter's nightshade, honewort (Cryptotaenia canadensis), jack‐in‐the‐pulpit

(Arisaema triphyllum), and wild licorice (Galium circaezans). Private property comprised 88.1% of the total area in

RMU 4.

Lastly, RMU 9 (4,716 km2) was a mixture of forests (400 km2), wetlands (607 km2), and row‐crop agriculture

(2,663 km2), and was located within the Southern Michigan/Northern Indiana Drift Plains and Eastern Corn Belt

Plains ecoregions (U.S. Environmental Protection Agency 1997). Soil types included silty and sandy loams, neutral

clays, and muck soils. Forest patches ranged from mesic to hydric hardwoods that contained American basswood

(Tilia americana), black cherry, red maple (A. rubrum), sugar maple, and silver maple (A. saccharinum). Dominant

herbaceous species included black snakeroot, common blue violet, enchanter's nightshade, garlic mustard, and

Virginia knotweed. Private property comprised 97.4% of the total area in RMU 9.

Within each RMU, we focused aerial sampling within 41.44‐km2 areas that we randomly selected from

Indiana's deer harvest reporting grid. The reporting grid spans the entirety of each RMU, and spatially separates
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each RMU into 6.44 × 6.44 km areas from which the Indiana Department of Natural Resources records deer

harvests. For fecal‐pellet and camera‐trap sampling, we sampled 10.36‐km2 square sub‐areas (henceforth referred

to as sub‐areas) placed within the larger 41.44‐km2 areas in which we conducted aerial sampling. We placed sub‐

areas to ensure that habitat composition was reflective of the greater 41.44‐km2 area and that property access

across the sub‐area was as homogeneously distributed as possible. In total, we sampled 7, 6, and 7 different areas

within RMUs 3, 4, and 9, respectively. The number of areas we sampled in each RMU was dependent on a larger

project with aims of estimating deer density across each RMU by sampling several additional years and areas.

Modelling methods

We estimated density using conventional distance sampling (Buckland et al. 2001) for each of the 3 methods we

evaluated. To ensure robust estimation of density, we presented the relevant consideration for each assumption in

the methods section below. For each method, we estimated density in both open (defined as agricultural fields,

pasture, and herbaceous grasslands) and concealed (defined as wetlands and forest) habitats in each RMU. Total

density for each method across both open and concealed habitats in each RMU was estimated using a weighted

F IGURE 1 Land cover types within deer Regional Management Units 3 (west central), 4 (southern), and 9
(northeastern) in Indiana, USA. The 41.44‐km2 areas where we conducted fecal‐pellet, camera‐trap, and aerial
sampling for white‐tailed deer in Spring 2021 are shown within Regional Management Units.

COST‐EFFECTIVENESS ANALYSIS | 5 of 22
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geographic stratification as ( )D D^ = ∑ ^
y i

H

H iy=1
2 iy

y
where D̂y is the density estimate across both habitats in RMU y , Hiy is

the total area of habitat i in RMU y , Hy is the total area of both habitats in RMU y , D̂iy is the habitat‐specific density

estimate in RMU y , and ( )var D var D(^ ) = ∑ (^ )y i

H

H iy=1
2

2
iy

y
.

Fecal‐pellet sampling

Sampling of fecal pellets is a common method used to estimate the densities of many wildlife species (Wood 1988,

Barnes 2001, Marques et al. 2001, Todd et al. 2008). To sample for fecal‐pellet groups of white‐tailed deer, we

surveyed 200‐m line transects during 1–24 March 2021 across the 3 RMUs. The assumption that fecal‐pellet

groups were detected at their initial location was easily met as fecal‐pellet groups are stationary. Transect location

and orientation was determined randomly using ArcMap 10.7 (ESRI, Redlands, CA, USA), subject to the dual

constraints of property access and separation from the nearest neighboring transect by ≥200m. Random placement

ensured that we met the assumption that fecal‐pellet groups were distributed independently of the transect. We

sampled concealed habitat disproportionate to its availability because white‐tailed deer spend less time in

agricultural fields compared to areas of natural cover (Beier and McCullough 1990, Nixon et al. 1991). Studies

utilizing pellet transects in adjoining states were used to guide decisions on transect spacing and number (Urbanek

et al. 2012, Anderson et al. 2013). Details of our stratified sampling are provided in Delisle et al. (2022b).

During field sampling, each transect was surveyed by one of multiple surveyors who conducted fecal‐pellet

sampling. A single surveyor walked each transect twice to meet the assumption that objects on the line are

detected with certainty. During the first pass, the surveyor focused all attention directly on the transect line to

ensure perfect detection at distance 0. During the second pass, the surveyor focused attention to each side of the

line. Upon detection of a fecal‐pellet group, each surveyor recorded the perpendicular distance from the transect

line to the center of the fecal‐pellet group, which met the assumption that distances were measured accurately. If a

fecal‐pellet group was detected on the first pass, the group was removed so that no fecal‐pellet group was

accidentally counted twice on the second pass; thus, the assumption that detections are independent events

was met.

To estimate deer density in concealed and open habitats using fecal‐pellet sampling, we used the formula from

Marques et al. (2001) and methods in Delisle et al. (2022b). To estimate the persistence time for dung piles

deposited during the study period in each RMU, we used the interobserver method from Delisle et al. (2022b).

Specifically, we used a weighted habitat‐specific persistence rate for each RMU, with weights based on the

sampling effort in each habitat type in each sub‐area (Estimation of persistence, available in Supporting

Information). We used the same defecation rate of 26.8 fecal‐pellet groups/deer/day for density estimates in each

RMU (Delisle et al. 2022b). We included variation from the persistence rate but not the defecation rate in the final

density estimates from pellet sampling because we did not experimentally estimate the defecation rate. Instead, we

used the defecation rate from previous research in similar study areas (Delisle et al. 2022b). Similarly, to model the

detection process and select a final model, we used the methods in Delisle et al. (2022b). We fit all detection

functions using the Distance package in R (Miller 2021).

Camera‐trap sampling

Camera‐trap sampling is a popular method used to estimate animal density (Delisle et al. 2021). We deployed

Browning Strike Force HD (Browning Trail Cameras, Birmingham, AL, USA) motion‐triggered camera traps from 2

February to 15 March 2021. We strived to deploy 20 camera traps per sub‐area, which Buckland et al. (2001)

recommended as the minimum number of sampling locations to estimate the encounter‐rate variance. However,
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access to private property limited the number of cameras in some sub‐areas. We randomly selected camera‐trap

locations using ArcMap 10.7 subject to the same access and proximity constraints as fecal‐pellet transects, which

met the assumption that deer were distributed independently of camera locations. In wooded areas, we affixed

camera traps to trees at a height of 1 m and in areas without trees we affixed camera traps to t‐posts at 1‐m height.

Affixing cameras at a height of 1 m assured that we would meet the assumption of detecting deer at distance 0 with

certainty, as deer could not pass beneath the camera. We oriented all camera traps to face north to avoid sun glare

at dawn and dusk. In rare instances, locations of camera traps were slightly altered from random (<20m) to ensure a

suitable location. When triggered, camera traps captured a burst of 3 photos usually separated by 0.3 seconds. We

set minimum time delays between triggers to 1 or 5 seconds. Quickly triggering upon detection helped ensure that

deer were detected at their initial location.

To estimate deer density in each RMU and habitat type (concealed and open) using camera traps, we relied on

the distance‐sampling method of Howe et al. (2017):

D
t n

ϴd T Pr A

^ =
2 ∑

∑
*
1

^
k
K

k

k
K

k k

=1

2
=1

(4)

In Equation 4, D̂ = estimated density, k = the camera trap sampled, nk = the total detections at camera trap k, t = the

time interval between consecutive detections (sec), ϴ = the angle of view (radians) of the camera trap, d = the

truncation distance (m), Tk = the total time sampled (sec), Prk = the probability of detection in the camera‐trap

sampling area at a given t demarcated by ϴ and d, and Â = the estimated fraction of a camera‐trap day spent active

and thus available for camera‐trap sampling. For our application, we most often measured the distance to a deer in

the first photo contained within a burst, and therefore we used t = 1.6 or 5.6 sec for most cameras. To estimate Â of

white‐tailed deer in each RMU, we first used the average anchoring method from Vazquez et al. (2019) to double‐

anchor deer detection times by the average sunset and sunrise times across the spatiotemporal extent of our

sampling in each RMU. We then estimated Â by fitting circular kernel distributions to the double‐anchored

detection times using the methods of Rowcliffe et al. (2014) and estimated the standard error (SE) of Â with

nonparametric bootstrapping (Rowcliffe et al. 2014) using the activity package in R (Rowcliffe 2021). Like

conventional multipliers, the resulting SE for Â was propagated into the SE of D̂ using the delta method (Buckland

et al. 2001).

We estimated distances from the camera trap to deer in photos by using reference videos of deployers holding signs

that indicated their distance from the camera trap at the edges and center of the camera trap's field‐of‐view (Howe et al.

2017), which helped to meet the assumption that distances were measured accurately. To estimate a detection function,

we fit half‐normal key functions with either 2 Hermite polynomial adjustments or no adjustments, uniform key functions

with either 1 or 2 cosine adjustment, and hazard‐rate key functions with either no, 1 or 2 cosine adjustments.

Additionally, we fit half‐normal and hazard‐rate key functions with several different combinations of factor covariates

including the following: (1) whether the camera trap's flash fired upon detection (night vs day), (2) local microhabitat

surrounding the camera trap (same microhabitats as in fecal‐pellet sampling), (3) RMU, (4) RMU and camera‐trap flash,

(5) camera‐trap flash and microhabitat, (6) RMU and microhabitat, and (7) camera‐trap flash, microhabitat, and RMU. We

estimated the SE of D̂ using nonparametric bootstrapping to sample camera traps with replacement. Similar to fecal‐pellet

sampling, we fit all detection functions using the Distance package in R (Miller 2021).

We measured distances to the same deer in consecutive photo bursts, as is standard with camera‐trap distance

sampling. Because recording distances to the same individual introduces overdispersion and violates the

assumption of independent detections, we used the 2‐step procedure proposed by Howe et al. (2019) for model

selection. Specifically, we used Akaike's Information Criterion adjusted for overdispersion (QAIC) to select the best

model within the same key function. We used the average number of detections per individual per camera visit as a

measure of the overdispersion factor, ĉ . After selecting the best model within key functions, we selected the best

overall model by dividing the χ2 goodness‐of‐fit (GOF) statistic by the degrees of freedom of the model. We chose
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the key function with the lowest quotient as the best model. To determine whether to fit a pooled detection

function across both open and concealed habitat types, or to fit unique detection functions for open and concealed

habitat types, we compared the sum of the QAIC from the best models (according to the 2‐step process) fit

separately and the QAIC of the best pooled detection function.

Aerial sampling

Aerial sampling has been used to estimate population abundance of many wildlife species (Haufler et al. 1993,

Jachmann 2002, Winiarski et al. 2014, Stapleton et al. 2016). In the context of distance sampling, counts obtained from

visual surveys on aerial platforms assume perfect detection along either the transect line or the distance at which left

truncation is specified (Laake et al. 2008). We used a vertical‐looking infrared (VLIR) platform coupled with high‐

resolution color video in an attempt to meet this assumption more readily than when sampling with observers counting

from the sides of fixed‐wing aircraft (Caughley and Grice 1982, Fleming and Tracey 2008) or when using forward‐

looking infrared (FLIR) cameras that increase distance and vegetative obstruction between the thermographer and

animals (Bernatas and Nelson 2004, Storm et al. 2011, Smith et al. 2020). Vertical‐looking infrared permits detection of

deer directly beneath the aerial platform (Kissell and Nimmo 2011). Combining VLIR with high‐resolution color video

was adopted to further augment VLIR capabilities (Franke et al. 2012, Chrétien et al. 2016).

We conducted aerial sampling during daylight hours from 8 February to 10 March 2021. During our flights, we

flew 16, ~6.44‐km transects that were aligned north to south in each 41.44‐km2 area. Based on prior work with deer,

each transect was separated by 400m (Kissell and Nimmo 2011). Transects were systematically aligned but randomly

placed, ensuring that deer were distributed randomly in relation to the transects. We flew at an altitude of ~450m and

speed of ~65mph in a Sky Arrow Light Sport Aircraft (Magnaghi Aeronautica S.p.A., Naples, Italy) to minimize the

chance of deer movement in response to the aircraft. Altitude was restricted to 300m in some 41.44‐km2 areas due to

low cloud cover. The width of the field‐of‐view of the camera was 126.5m and 84.3m for flights conducted at 450m

and 300m above ground altitude, respectively, and thus there was never overlap between neighboring transects. We

never documented reactive movement towards the aircraft, and our flight speeds minimized the potential for random

double counting, which poses no problem for population monitoring (Buckland et al. 2001). To that end, estimators of

the encounter‐rate variance are robust to violation of the assumption that detections are independent (Buckland et al.

2015), which could arise from double counting.

We recorded VLIR video of the ground beneath the plane with an IR‐TCM HD 1024 stationary thermography

camera combined with a telephoto 60mm lens (Jenoptik, Jena, Germany). Simultaneously, we recorded vertical‐

looking, red‐green‐blue (RGB) video of the same areas using a Nikon D810 DSLR camera combined with the Nikon

AF DC‐NIKKOR 135mm f/2D lens (Nikon Inc., Melville, NY, USA). Cameras were affixed to either side of the

aircraft and pointed directly at the ground during flight. The VLIR and RGB video were synchronously recorded,

georeferenced, and stored digitally using a GeoDVR Mini (Remote GeoSystems Inc., Fort Collins, CO, USA) and

Garmin GPS (Garmin Ltd., Olathe, KS, USA).

After we conducted our flights, we viewed the VLIR and RGB video using the LineVision—Ultimate software

(Remote GeoSystems, Inc.). Upon detecting a heat signature in the VLIR video that we suspected to be a deer, RGB

video was used for confirmation. In addition, we measured the perpendicular distance from each deer to the

centerline of the video and recorded whether the deer was located in concealed or open habitat. The LineVision

software is equipped with a feature that allows measuring of distance, which ensured that we measured distances

accurately. Similar to other past research using VLIR (Kissell and Nimmo 2011), after preliminary examination of

the aerial sampling distance data, we found uniform detection across all distances from the transect line to the

field‐of‐view edge of the camera (Aerial detection probability, available in Supporting Information; Delisle et al.

2022a). However, we did document false negatives caused by viewers missing infrared signatures (i.e., perception

errors; Brack et al. 2018). Therefore, we estimated the probability of a single viewer detecting an infrared signature,
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and the standard error of that probability, using the mark‐recapture methods described in Delisle et al. (2022a) on a

subset of our aerial data from each altitude.

We estimated deer density in each RMU and habitat (open and concealed) by using the equation from Buckland

et al. (2015) with the probability of detecting an infrared heat signature as a multiplier:

D
n

Q pr det
^ =

1

( )
(5)

where n = the total number of deer detected, Q = the total area sampled, and pr det( ) = the probability of detecting

an infrared heat signature. We used the probabilities of detecting a deer in each RMU from Delisle et al. (2022a).

We calculated Q with the field‐of‐view of the infrared sensor and the above‐ground altitude maintained by the

pilot. We used the field‐of‐view of the infrared sensor instead of the color sensor because we identified candidate

heat signatures in the infrared video before consulting color video. We estimated the standard error (SE) of D̂ using

an approach modified from the R2 method in Fewster et al. (2009), where







∑SE D
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Q J
q
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−
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J

j
j

j
2

=1

2

2

(6)

and J = the number of transects, qj = the total area sampled on transect j, and nj = the total number of detections on

transect j. We then propagated the error from the probability of detecting an infrared heat signature into SE D(^)

using the delta method.

Comparing methods and cost‐effectiveness analysis

We compared the performance of fecal‐pellet, camera‐trap, and aerial sampling along multiple dimensions

associated with a single application of each field method in each RMU. These dimensions included the CV of the

density estimate, the spatial extent of sampling, the initial cost required to attain an estimate, and the recurring

costs for continued use. We compared the relative precision of each density estimate using the coefficient of

variation (CV). For spatial extent we compared the total area, a, over which density was inferred by each method.

Consistent with Laguardia et al. (2021), we defined a as the area of the sub‐areas within each RMU for fecal‐pellet

and camera‐trap sampling, and the area of the 41.44‐km2 areas in each RMU for aerial sampling. We assessed 3

measures of sampling costs: (1) capital, (2) field‐operations, and (3) data‐processing costs. The capital cost was

defined as the annualized upfront expense for equipment. We did not consider the capital cost of field vehicles

used for fecal‐pellet and camera‐trap sampling. In cases where we used the same field equipment for estimating

density in each RMU for a particular method, the annualized upfront capital cost was divided between the 3 RMUs

to calculate the cost per‐use via the following formula:

CC
CC A r N

U
U=

/ ( , )
i

I

I
i (7)

where CCi = the repeated capital cost for the ith RMU, CCI = the total cost of the repeatedly used capital across all I

RMUs, UI = the total usage (e.g., number of transects or points sampled with capital) of the repeatedly used capital

across all I RMUs per application, andUi = the usage of the repeatedly used capital for the ith RMU. In cases where

select field operations were performed to conduct field work on all RMUs (e.g., installing sensors on the aircraft),

this cost was divided between RMUs by removing the annuity factor and replacing capital cost with the cost of the

select field operations in Equation 7. We decided to split shared costs between RMUs because the Indiana

Department of Natural Resources requires density estimates across at least 3 RMUs per sampling year, and we

suspect that other states may also require estimates for multiple areas. The field‐operations cost was defined as the

COST‐EFFECTIVENESS ANALYSIS | 9 of 22
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recurring cost associated with each field application of the method to estimate density. Lastly, we defined the data‐

processing cost as the cost to process the data which included the hourly cost of entering data, viewing and scoring

aerial footage, classifying species within camera‐trap photos, measuring distances to deer within camera‐trap

photos, and analysis.

We calculated the cost effectiveness of each method using Equations 1 and 2. We calculated annualized capital

costs assuming N = 1, 2…, 15 applications to assess the sensitivity of our cost‐effectiveness ratios to the lifespans of

capital equipment. Lastly, we repeated these analyses while allowing for user‐specified weights using Equation 3.

We specified weights using the importance scores given by the Indiana state deer biologist. Specifically, we used

the following importance scores: icv = 100, iCC = 10, iFOC = 40, iDPC = 20, and ia = 100, which corresponded to weights

of wcv = 1.852, wCC = 0.185, wFOC = 0.741, wDPC = 0.370, and wa = 1.852. We performed all analyses using the R

programming language version 4.1.2 (R Core Team 2021).

RESULTS

Fecal pellet sampling

In total, we surveyed 263 transects covering 52.6 km and detected 1,262 fecal‐pellet groups across all 3 RMUs. A

stratified detection function across open and concealed habitats was most parsimonious when we fit candidate

detection functions to cumulative data collected across all RMUs (ΔAIC = 872.1). Following this, a pooled detection

function and stratified encounter rate were most parsimonious across the RMUs for both open (ΔAIC = 45.8) and

concealed (ΔAIC = 476.6) habitats. Lastly, a pooled detection function and stratified encounter rate were most

parsimonious across grassland and agriculture within open habitats (ΔAIC = 43.9). Thus, we used unique detection

functions for open and concealed habitat, and a stratified encounter rate to estimate RMU‐specific densities for

each habitat type. We truncated all detections >110 cm and >150 cm from the transect line in open and concealed

habitat, respectively, to remove a right tail of distances with low associated detection probabilities (Buckland et al.

2001). Truncation removed a total of 100 detections. Following truncation, the hazard‐rate detection function with

no adjustments or covariates (ΔAIC = 1.02, Cramer‐von Mises GOF P = 0.89) and the half‐normal detection function

with observer and sub‐area as covariates (ΔAIC = 2.5, Cramer‐von Mises GOF P = 0.21) were the AIC‐best models

in open and concealed habitat types, respectively. In RMU 3, 4, and 9, we estimated t̂ at 45.2 (SE = 3.1), 31.9

(SE = 5.4), and 51.9 (SE = 3.1) days in concealment, 71.5 (SE = 3.1), 53.7 (SE = 10.4), and 78.3 (SE = 3.5) days in

agricultural fields, and 106.5 (SE = 3.9), 77.3 (SE = 8.4), and 111.6 (SE = 5.9) days in prairies, respectively.

The average density from fecal‐pellet sampling across RMUs in open, concealed, and across both habitats was

6.48 (SE = 2.33), 15.20 (SE = 0.23), and 9.59 (SE = 1.89) deer/km2, respectively. The average CV of density in open,

concealed, and across both habitats was 0.50 (SE = 0.08), 0.20 (SE = 0.03), and 0.28 (SE = 0.02), respectively. Within

each RMU, the densities in concealed habitat were always larger than those in open habitat (Table 1). Similarly,

within each RMU, the CVs of densities in concealed habitat were always smaller than those in open habitat. The

average capital, data‐processing, and field‐operations costs across RMUs was $427 (SE = $50), $116 (SE = $9) and

$4,045 (SE = $396; Table 2), respectively. The total area for fecal‐pellet sampling was 72.5 km2 for both RMU 3 and

9, and 62.2 km2 for RMU 4. The average cost effectiveness and weighted cost effectiveness across RMUs for fecal‐

pellet sampling was 18.27 (SE = 1.26) and 12.40 (SE = 0.87), respectively.

Camera‐trap sampling

We deployed 428 camera traps and captured a total of 1,015,178 photos. We removed 21 camera traps from our

analysis due to placement concerns (e.g., pointed downward or upward) resulting in 407 camera traps used to
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estimate density (Table 3). We used data collected during a 2‐week period from 25 February to 10 March 2021 in

order to streamline data analysis. Within this 2‐week period, we captured 294,335 photos, 81,740 of which

contained deer. We measured a total of 30,732 and 9,505 distances in concealed and open habitat, respectively.

During preliminary investigation of the data, we observed a spike in detections near camera traps in open habitat.

Because of this, we did not consider the hazard‐rate key function during model selection in open habitat, because

this model can fit unnaturally large spikes at close distances resulting in an unnaturally abrupt decline in

detectability as distance increases. After removing the hazard rate model from consideration in open habitat, we

TABLE 1 Density estimates of white‐tailed deer from fecal‐pellet data collected from 1–24 March 2021 in 3
different regional management units (RMU) of Indiana, USA. Densities and corresponding measures of precision
were estimated using conventional distance sampling, and are shown for concealed, open, and across both
concealed and open (Total) habitat types. The number of 200‐m transects surveyed (k) and number of detections
after truncation (n) are presented for each RMU and habitat type.

Habitat RMU k n D̂  SE D̂  CV D̂

Concealed 3 42 246 14.919 2.694 0.181

Concealed 4 88 395 15.011 3.763 0.251

Concealed 9 46 298 15.661 2.506 0.16

Open 3 57 122 4.737 1.932 0.408

Open 4 9 9 3.607 2.393 0.663

Open 9 21 92 11.097 4.893 0.441

Total 3 99 368 5.922 1.736 0.293

Total 4 97 404 10.673 2.503 0.235

Total 9 67 390 12.189 3.771 0.309

TABLE 2 The capital (CC), field operation (FOC), and data processing costs (USD; DPC), area over which
density was inferred (km2), coefficient of variation (CV), cost effectiveness (CE), and weighted cost effectiveness
(CEw) associated with density estimates from fecal‐pellet (PS), camera‐trap (CS), and aerial (AS) sampling in regional
management units (RMU) 3, 4, and 9 within Indiana, USA, in 2021. Weights were assigned by the Indiana state deer
biologist. Capital costs were annualized across a single application. We underlined the best index within each RMU.

Method RMU CC FOC DPC Area CV CE CEw

PS 3 482 4107 110 72 0.29 18.98 12.82

PS 4 472 4699 104 62 0.24 19.94 13.64

PS 9 326 3330 134 72 0.31 15.79 10.72

CS 3 19714 7986 3126 72 0.15 65.61 22.82

CS 4 15967 6156 2412 62 0.18 69.03 23.66

CS 9 19475 7330 5181 72 0.12 52.71 18.05

AS 3 28606 4260 729 290 0.17 19.34 5.02

AS 4 24520 3819 695 249 0.13 15.18 3.99

AS 9 28606 4362 723 290 0.11 12.19 3.18

COST‐EFFECTIVENESS ANALYSIS | 11 of 22
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found a stratified detection function across open and concealed habitat to be most parsimonious (ΔQAIC =

1,298.2). We found the uniform key function with 1 cosine adjustment (Δχ2/df = 332.2) and the uniform key

function with 2 cosine adjustment terms (Δχ2/df = 190.7) to be the best detection functions in open and concealed

habitats, respectively. In RMU 3, 4, and 9, we estimated Â at 0.38 (SE = 0.02), 0.43 (SE = 0.03), and 0.42 (SE = 0.01),

respectively.

The average density from camera‐trap sampling across RMUs in open, concealed, and across both habitats was

7.16 (SE = 1.97), 14.15 (SE = 5.17), and 8.45 (SE = 2.76) deer/km2, respectively. The average CV of density in open,

concealed, and across both habitats was 0.24 (SE = 0.05), 0.16 (SE = 0.01), and 0.15 (SE = 0.02), respectively.

Density estimates in concealed habitat were larger than those in open habitat in RMU 3 and 9, but the reverse was

true for RMU 4 (Table 3). The CVs of densities in concealed habitat were always smaller than those in open habitat.

Similar to fecal‐pellet sampling, total density was largest for RMU 9 and smallest for RMU 3. The average capital,

data‐processing, and field‐operations costs across RMUs was $18,385 (SE = $1,211), $3,573 (SE = $830), and

$7,157 (SE = $535; Table 2), respectively. The total area for camera‐trap sampling was 72.5 km2 each for RMUs 3

and 9, and 62.2 km2 for RMU 4. The average cost effectiveness and weighted cost effectiveness across RMUs for

camera‐trap sampling was 62.45 (SE = 4.97) and 21.51 (SE = 1.75), respectively.

Aerial sampling

We recorded video on 111, 96, and 112 transects in RMUs 3, 4, and 9, respectively. On a single transect in RMU 3,

our video recording system failed to record, which resulted in 111 transect videos instead of 112. We recorded

6.90, 5.49, and 6.67 hours of video in RMUs 3, 4, and 9, respectively.

The average density from aerial sampling across RMUs in open, concealed, and across both habitats was 1.31

(SE = 0.49), 21.64 (SE = 7.95), and 6.11 (SE = 2.06) deer/km2, respectively. The average CV of density in open,

concealed, and across both habitats was 0.36 (SE = 0.01), 0.14 (SE = 0.02), and 0.13 (SE = 0.02), respectively. Within

each RMU, the densities in concealed habitat were always larger than those in open habitat (Table 4). Similarly,

within each RMU, the CVs of densities in concealed habitat were always smaller than those in open habitat. The

average capital, data‐processing, and field‐operations costs across RMUs was $27,244 (SE = $1,362), $716

TABLE 3 Density estimates of white‐tailed deer from camera‐trap sampling data collected from 25 February to
10 March 2021 in 3 different regional management units (RMU) of Indiana, USA. Densities and corresponding
measures of precision were estimated using conventional distance sampling, and are shown for concealed, open,
and across both concealed and open (Total) habitat types. The number of cameras deployed (k) and the number of
detections after truncation (n) are presented for each RMU and habitat type.

Habitat RMU k n D̂  SE D̂  CV D̂

Concealed 3 85 6,549 11.791 1.893 0.161

Concealed 4 91 4,642 6.600 1.223 0.185

Concealed 9 108 19,541 24.055 3.513 0.146

Open 3 60 2,459 3.806 0.789 0.207

Open 4 23 2,040 7.029 2.388 0.340

Open 9 40 5,006 10.642 1.875 0.176

Total 3 145 9,008 4.736 0.731 0.154

Total 4 114 6,682 6.763 1.183 0.175

Total 9 148 24,547 13.851 1.655 0.120
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(SE = $10) and $4,147 (SE = $167; Table 2), respectively. The total area for aerial sampling was 290.1 km2 each for

RMUs 3 and 9, and 248.6 km2 for RMU 4. The average cost effectiveness and weighted cost effectiveness across

RMUs for aerial sampling was 15.83 (SE = 2.11) and 4.11 (SE = 0.54), respectively.

Comparing methods and cost‐effectiveness analysis

Total density estimates from aerial sampling were consistently smaller than density estimates from the other methods.

All 3 methods suggested that total densities of deer were largest in RMU 9 and smallest in RMU 3. Aerial and camera‐

trap sampling always had the lowest CVs. The lowest capital, field‐operating, and data‐processing costs were

associated with fecal‐pellet sampling, except field‐operating costs for aerial sampling in RMU 4 (Tables 2 and 5).

After a single application (i.e., capital costs annualized across a single application), aerial sampling was the most

cost effective in RMUs 4 and 9, while fecal‐pellet sampling was the most cost effective in RMU 3 (Table 2).

However, when differential weights were used with input parameters, aerial sampling was always the most cost‐

effective method after a single application of each method. When annualizing the capital costs of each method

across 1, 2…,15 applications, the cost effectiveness of aerial sampling improved with increasing number of

applications at a more rapid rate than that of fecal‐pellet sampling. Although cost effectiveness of camera‐trap

sampling was most sensitive to the number of applications, camera‐trap sampling still never surpassed either fecal‐

pellet or aerial sampling, regardless of whether differential weights were used or how many applications capital cost

was annualized across (Figure 2).

DISCUSSION

Cost‐effectiveness analysis is a simple and powerful tool to decide between competing methods to estimate animal

density. Past evaluations of methods used for estimating animal densities usually compared the cost and

various factors related to the performance of methods separately (Anderson et al. 2013, Hedges et al. 2013,

TABLE 4 Density estimates of white‐tailed deer from aerial‐sampling data collected from 8 February to 10
March 2021 in 3 different regional management units (RMU) of Indiana, USA. Densities and corresponding
measures of precision were estimated using plot sampling methods, and are shown for concealed, open, and across
both concealed and open (Total) habitat types. The area captured by the field‐of‐view of the vertical‐looking
infrared thermographer (Q), as well as the number of detections after truncation (n) are presented for each RMU
and habitat type.

Habitat RMU Q n D̂  SE D̂  CV D̂

Concealed 3 13.8 250 22.349 4.074 0.182

Concealed 4 50.34 379 7.528 1.036 0.138

Concealed 9 20.54 671 35.038 3.662 0.105

Open 3 76.35 42 0.679 0.247 0.363

Open 4 22.55 22 0.976 0.362 0.371

Open 9 39.29 83 2.266 0.773 0.341

Total 3 90.15 292 3.202 0.534 0.167

Total 4 72.89 401 5.035 0.657 0.13

Total 9 59.83 754 10.105 1.063 0.105
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TABLE 5 A breakdown of cost (USD) sources comprising capital (CC), field‐operating (FOC), and data‐
processing (DPC) costs for aerial, camera‐trap, and fecal‐pellet sampling methods used to estimate white‐tailed
deer density in Indiana, USA. Deer densities were estimated in Deer Regional Management Units (RMU) 3, 4, and 9.
Costs per unit, hour of operation, or mile (Cost/UHM) and the number of units, hours of operation, or miles (No. of
UHM) for each source of cost are presented.

Method Type Source Cost/UHM No. of UHM RMU 3 RMU 4 RMU 9

Pellet CC Field equipment 272.13 Variablea 468 458 317

FOC Field labor 17.76 534 3,229 3,894 2,362

Travel (gas) 0.58 892 161 189 168

Study design labor 26.39 18 166 143 166

Land permission 1,575.00 NA 551 473 551

DPC Analysis labor 24.38 14 110 104 134

Camera CC Camera equipmentb 119.02 428 18,210 14,758 17,972

Field equipmentc 272.13 4 388 305 396

Equipment shipping 1,520.00 1 542 438 540

FOC Field labord 18.35 784 5,515 4,007 4,866

Travel (gas) 0.58 1,784 321 379 335

Study design labor 26.39 7 65 55 65

Batteries 1.67 2,568 1,533 1,242 1,513

Land permission 1,575.00 NA 551 473 551

DPC Downloading labor 24.38 40 349 283 344

Classification labore 14.40 169 870 557 1,008

Distance labor 13.79 424 1,420 1,086 3,342

Analysis labor 24.38 60 488 488 488

Aerial CC IR sensor 33,488.00 1 11,721 10,046 11,721

Color sensor 4,088.90 1 1,431 1,227 1,431

Pod engineering 95.00 209 6,949 5,957 6,949

GeoDVRf 18,510.00 1 6,479 5,553 6,479

Equipment shipping 3,410.25 1 1,194 1,023 1,194

FOC Plane usage 237.00 37 2,989 2,714 3,081

Operational labor 24.38 37 307 279 317

Study design labor 26.39 9 83 71 83

Sensor installation 95.00 18 599 513 599

Sensor removal 95.00 9 283 242 283

DPC Viewing labor 24.38 28 241 207 236

Analysis labor 24.38 60 488 488 488

aField equipment for pellet sampling included 8 tape measures and 4 GPS units.
bCamera equipment includes the cost of cameras, security boxes, python cables, and SD cards.
cField equipment includes the cost of compasses, tape measures, and GPS units.
dField labor cost/hour is a weighted average (weighted based on hours of labor) between coordinator ($25.58 USD/hour),
technician ($13.32 USD/hour), and graduate student ($24.38 USD/hour) labor.
eClassification labor is a weighted average (weighted based on hours of labor) between technician ($13.32 USD/hour) and
graduate student ($24.38 USD/hour) labor.
fGeoDVR includes the price of the GeoDVR as well as upgrades and accessories that we required.
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Zero et al. 2013). Unfortunately, such comparisons can lead to conflicting results that can confound decision makers

(e.g., one method is more precise, but another requires less money). Therefore, we developed a cost‐effectiveness

model that integrates cost, performance, and scale into a single, comparable, and easily interpretable value (e.g.,

cost per unit land area standardized by relative precision) for methods estimating density.

Wildlife management agencies are limited by funding (Leopold et al. 2018), and thus decisions about the cost

effectiveness of a management technique should affect the selection and quantity of management activities in

which managers engage (Anderson and Loomis 2006). However, whether a method can actually be implemented

(i.e., feasibility; Hopfensperger et al. 2007, Bowen et al. 2009) may depend on factors other than those included in

F IGURE 2 The cost‐effectiveness (a) and weighted cost‐effectiveness (b) of aerial (AS), camera‐trap (CS), and
fecal‐pellet sampling (PS) when estimating the density of white‐tailed deer in Regional Management Units (RMU) 3,
4, and 9 within Indiana, USA, in 2021. Capital cost was annualized across 1, 2…, 15‐application lifespans.
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cost‐effectiveness analysis. Laguardia et al. (2021) introduced a metric they termed an integrated feasibility index

which incorporated similar parameters as our model (cost, scale, and precision), but their index does not assess

feasibility. Indeed, simple rearrangement reveals that their index is a modified cost‐effectiveness ratio of the form

given in Equation 1. More appropriately, factors that determine feasibility are a result of constraints placed on an

agency by internal or external forces. Internal constraints may be related to operational priorities, which limit the

amount of money that can be spent on a project or the number of personnel assigned to the task. External

constraints are often beyond the control of natural resource agencies and may include bureaucratic restrictions

such as limits on the maximum number of personnel allowed for hiring, or the maximum number of vehicles allowed

for purchasing, regardless of whether the agency can afford more personnel or vehicles. External constraints may

limit feasibility even when internal constraints are absent. Therefore, agencies must identify the factors affecting

the feasibility of a method before consideration and adjust how methods are applied to ensure feasibility prior to

assessing cost effectiveness.

Due to limited funding, wildlife agencies may be more inclined to spend funds on methods that have the

potential to collect additional biological information in conjunction with the target data. When using our study‐

design methods, camera‐trap sampling can also be used to estimate the density or occurrence of many other

species captured in images, and can answer other questions related to behavior, health, and demographics (Delisle

et al. 2021). Aerial sampling using infrared thermographers can estimate the density of other medium to large

endotherms (Chrétien et al. 2015). When conducting field work for fecal‐pellet sampling, fecal pellets may be

simultaneously collected for genetic analyses (Kaunisto et al. 2017), or other animal sign recorded (Wood 1988).

Similar to feasibility constraints, the value put on the potential to collect additional information depends on

management objectives and funding; therefore, we did not explicitly consider the potential to collect additional

information. If agencies do consider the additive utility of competing methods, then the added utility should be

discounted appropriately according to its value relative to the importance of the primary purpose of the survey.

We used aerial, fecal‐pellet, and camera‐trap sampling to estimate the density of a common ungulate in 3 large

regions. Based on weighted and non‐weighted cost‐effectiveness analysis, aerial sampling was the most cost

effective when annualizing the capital cost of each method across multiple applications. Aside from annualizing

capital costs across only a single application, the superior cost effectiveness of aerial sampling was apparent in all 3

RMUs, which suggests consistency even for landscapes with vastly different habitat compositions and varying

densities. These findings are dependent on our method which splits the shared costs across RMUs. We decided to

split shared costs between RMUs because future management objectives of the Indiana Department of Natural

Resources seek to estimate deer density (1) in the remaining RMUs within the state, (2) across no fewer than 3

RMUs per sampling year, and (3) repetitively across many future sampling years. The RMUs included in the current

study span the range of landscape conditions in the state, and thus we believe the better long‐term cost

effectiveness of aerial sampling will hold true in the remaining RMUs. More generally, we suspect that the superior

long‐term cost effectiveness of aerial sampling will translate to density estimation of other common endothermic

species that can be detected using infrared thermographers in similarly sized or larger areas outside of Indiana.

A substantial portion of our field operating costs for camera‐trap and fecal‐pellet sampling were associated

with acquiring permission to sample on private property. Aerial sampling forgoes this requirement, as airspace is not

privately owned. We predict narrower differences between the cost‐effectiveness ratios of aerial sampling and

fecal‐pellet and camera‐trap sampling for studies similar to ours but conducted in areas dominated by public lands.

In comparison to the other methods we considered, camera‐trap sampling had higher field‐operation and data‐

processing costs (i.e., recurring costs). Specifically, the mean data processing costs for camera‐trap sampling per

RMU were $30.1 (SE = $4.5) and $5.0 (SE = $1.1) USD times greater than those from fecal‐pellet and aerial

sampling, respectively. Such discrepancies might discourage future researchers from using camera traps to estimate

trends in density across large spatiotemporal expanses, but this finding reflects the current technology available for

accurately processing data. Models for automated species tagging (Willi et al. 2019, Norouzzadeh et al. 2021) and

distance estimation (Haucke et al. 2021, Zuleger et al. 2022) appear promising and, if easy‐to‐use forms are readily
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available in the future, could substantially decrease the cost of processing data from camera traps. To predict future

cost effectiveness, we simulated a reduction in the data‐processing cost of camera‐trap sampling to $200; however,

the weighted and unweighted cost‐effectiveness ratios showed the same preference rankings across methods.

Therefore, despite the increased usage of camera traps (Delisle et al. 2021), our study suggests the cost

effectiveness of camera‐trap sampling for estimating density across larger heterogenous landscapes is poor in

comparison to alternative methods.

Within each RMU, densities from aerial sampling in open and concealed habitats were considerably lower and

higher (except in RMU 4), respectively, than the other 2 methods. These patterns likely resulted because we

conducted aerial sampling diurnally when deer were less likely to use open habitats (Larson et al. 1978). Our density

estimates from camera traps and pellet counts both incorporated nighttime hours when deer are far more likely to

use open habitat types (Larson et al. 1978). Specifically, density estimates from pellet sampling represent an

average density across the time it takes pellet groups to decay (Marques et al. 2001), and densities from camera

sampling are an average density across the snapshot moments during the time cameras are sampling. Therefore,

interpretation of differences between density estimates from the 3 methods should focus on the total density

across both open and concealed habitat types.

Density estimates from aerial and camera‐trap sampling had lower CVs than the estimates from pellet sampling.

Uncertainty from many different sources can impact the variation of density estimates (Williams et al. 2002). These

sources of variation include detectability as a function of distance (Buckland et al. 2001), observer (Buckland and

Garthwaite 1991), or a combination of these and other covariates (Burt et al. 2014); multipliers such as activity or

availability levels (Howe et al. 2017), group size (Hamilton et al. 2018), and persistence or production of cues

(Marques et al. 2001, Buckland et al. 2008); classification discrepancies among observers (Delisle et al. 2022b); and

the encounter rate between transects or points (Fewster et al. 2009). Our estimates from aerial sampling only

addressed variation from the encounter rate and detectability differences between viewers of infrared video.

Similarly, the estimates from camera trapping and pellet sampling addressed variation from the encounter rate,

detection function, and multipliers (activity level and dung persistence rate), but spatial replicates were more

plentiful for camera trapping. These additional sources of variation and fewer spatial replicates likely contributed to

the higher CVs of density estimates from pellet sampling.

Although we used 3 common field‐sampling methods under, perhaps, the most common statistical estimator used

for estimating wildlife density (distance sampling), other sampling methods and estimators exist. Field‐sampling

methods related to density estimation that we did not consider include, but are not limited to, drones (Chrétien et al.

2016) and spotlighting (McCullough 1982). Similarly, other statistical estimators of density include, but are not limited

to, capture‐recapture methods (Royle et al. 2013), N‐mixture models (Royle 2004), and random encounter or random

encounter and staying time models (Rowcliffe et al. 2008, Nakashima et al. 2018). We chose to implement fecal‐pellet,

camera‐trapping, and aerial sampling methods under a distance‐sampling framework because these strategies could be

reasonably applied while meeting study‐design and sampling assumptions. Even subtle changes to field sampling and

statistical methods could alter costs or precision. For instance, guidelines with case studies are needed on how best to

account for factors such as reactive behavior toward cameras. We encourage future comparisons of the cost

effectiveness of other field sampling and statistical methods, and how cost effectiveness is influenced by finer

examination of other field‐sampling and statistical decisions within common density estimators.

We extended cost‐effectiveness analysis to specifically decide between density‐estimation methods, and we

believe that the same principles can be used to decide between competing alternatives related to many types of

ecological monitoring. For example, several methods exist that aim to reduce human‐wildlife conflict (Tarlow and

Blumstein 2007) or measure the impacts of herbivores on plant communities (Kirschbaum and Anacker 2005, Royo

et al. 2016). Simple alterations to our cost‐effectiveness analysis can aid these decisions. Similarly, methods that

integrate multiple data types to produce a single estimate (i.e., fusion models) are becoming more popular due to

increased precision (Zipkin et al. 2021). Our approach to cost‐effectiveness analysis offers a formal framework to

determine whether the improved precision is worth the extra cost and effort to collect multiple data types.
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MANAGEMENT IMPLICATIONS

When considering the cost effectiveness of field methods, the relative importance of cost, precision, and area sampled

depends on context, and each agency will have its own set of parameters with which to contend (Leopold et al. 2018).

Unfortunately, most cost‐effectiveness analyses do not take this into consideration. When we used equal weights of

importance for input parameters, the cost‐effectiveness ratios of aerial and fecal‐pellet sampling were very similar after

a single application of each method. However, because the deer manager in Indiana allocated low importance to cost‐

related parameters and placed much greater value on the precision of the density estimate, aerial sampling was clearly

identified as the most cost‐effective approach. In general, wildlife managers should use our weighted cost‐

effectiveness ratio (Equation 3), because it permits users to specify importance of each parameter and thus flexibly

accommodates the unique context faced by each agency. Context‐independent comparisons of methods across

agencies or jurisdictions should use cost‐effectiveness ratios computed using Equations 1 and 2.
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