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ABSTRACT Population estimates derived from aerial surveys of ungulates are biased by imperfect
detection, where probability of sighting groups is influenced by variables specific to terrain features and
vegetation communities. Therefore, methods for bias-correction must be validated for the region to which
they will be applied. Our objectives were to quantify factors affecting detection probability of mule deer
(Odocoileus hemionus) during helicopter surveys in Texas, USA, rangelands, and develop a detection
probability model to reduce bias in deer population estimates. We placed global positioning system (GPS)
collars on 215 deer on 6 sites representative of mule deer range in the southern Great Plains and the
Chihuahuan Desert during 2008–2010. We collected data during aerial surveys in January–March and fit
logistic regression models to predict detection probability of mule deer based on ecological and behavioral
covariates. We evaluated the model using independent estimates of population size derived from a mark-
resight procedure. Detection of mule deer was negatively related to distance from the transect, increasing
brush cover, sunlight, and increasing terrain ruggedness (P< 0.01). Probability of detection in brush cover
was greater if deer were active (P¼ 0.02). Population estimates corrected for visibility bias using our
detection probability model or mark-resight models averaged 2.1� 0.49 (SD; n¼ 50) and 2.2� 0.62 times
larger, respectively, than uncorrected counts. Estimates of population size derived from the detection
probability model averaged 101� 26% of mark-resight estimates. However, the detection probability
model did not improve precision of population estimates, probably because of unmodeled variation in
availability of deer during surveys. Our detection probability model is a simple and effective means to
reduce bias in estimates of mule deer population size in southwestern rangelands. Availability bias may be a
persistent issue for surveys of mule deer in the Southwest, and appears to be a primary influence of variance
of population estimates. � 2016 The Wildlife Society.

KEY WORDS Chihuahuan Desert, mark-resight, population estimation, sightability, southern Great Plains, Texas,
visibility bias.

Aerial surveys are often used to count large mammals over
large geographic areas. Unfortunately, counts are biased low
because the visibility of animals is influenced by terrain,
vegetation, topography, animal activity, social behavior, and
other factors (Caughley 1974, Beasom et al. 1981, DeYoung
1985, Pollock and Kendall 1987, Samuel et al. 1987). Counts
could be easily adjusted if visibility bias was consistent, but
the proportion of the population observed often varies
widely. For instance, the proportion of marked white-tailed
deer (Odocoileus virginianus) observed during repeated

surveys in rangelands of southern Texas, USA, varied from
17–75% (Beasom et al. 1986).
Without a means to account for probability of detection,

changes in annual population counts could be due to an
actual change in population size, a change in detection
probability, or both (Williams et al. 2002). Experienced
observers understand that annual variation in population
estimates often is the result of variable detection probability
and not necessarily the result of population growth or
decline. Nonetheless, accounting for variation in count data
is a consistent and vexing problem for managers. Consecutive
years of surveys are needed to track population trends, but
count data often have low power to detect large changes in
population size and cannot be statistically compared
(Carpenter et al. 2003, Keegan et al. 2011). These limitations
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hamper the ability of managers to respond to variation in
recruitment or survival, or assess the effects of habitat
manipulations and other factors on population performance.
Reliance on uncorrected surveys is of special concern for

mule deer (O. hemionus), which have experienced range-wide
declines in population size and loss of habitat (Gill 2001,
Walker 2011, Bergman et al. 2015). Furthermore, popula-
tion management that is scientifically defensible is increas-
ingly demanded by the public (Freddy et al. 2004, Keegan
et al. 2011) and requisite for the cooperative management of
natural resources across state and national borders. Marking
a portion of the population and conducting surveys to obtain
ratios of marked to unmarked animals provides reliable
population estimates. However, the logistics and expense of
marking large numbers of animals over broad areas makes
application of mark-resight techniques difficult in surveys
typically conducted by state wildlife agencies (Bartmann
et al. 1987). Application of detection probability models, also
known as sightability models (Samuel et al. 1987, Steinhorst
and Samuel 1989), is an alternative population estimation
procedure that does not involve marking animals. Detection
probability models have been used to correct for visibility bias
during surveys of elk (Cervus elaphus; Anderson et al. 1998,
Cogan and Diefenbach 1998, Bleich et al. 2001) and other
large mammals in the western United States (Bodie et al.
1995, Anderson and Lindzey 1996, Unsworth et al. 1999,
Rice et al. 2009, Jacques et al. 2014). Variables commonly
found to influence detection probability include vegetation
cover type, animal activity, group size, background color
(e.g., snow, green vegetation, brown vegetation, soil), and

distance from the survey transect. After an initial study to
quantify variables that influence detection probability using
radio-marked animals, users can estimate detection proba-
bility without the need for marked animals (Samuel et al.
1987).
The performance of detection probability models relies on

sound empirical estimates of detection probability generated
under similar conditions as actual surveys (Steinhorst and
Samuel 1989). Models developed previously for mule deer in
the northern Rocky Mountains (Ackerman 1988, Unsworth
et al. 1999) are not representative of conditions in the arid
southwestern portion of the species’ range because of
differences in habitats, snow conditions, and group sizes.
For instance, mule deer in Texas do not congregate in large
herds on winter ranges, and snow cover is rare during surveys.
Because detection probability models have not been
developed for mule deer in rangelands of the southwestern
United States, the objective of our study was to develop and
test a detection probability model for aerial surveys of mule
deer in this region.

STUDY AREA

We conducted our study on 6 sites representative of the
major vegetation communities encountered during mule
deer surveys in Texas. Study sites averaged 30 km2 and were
located in the Trans-Pecos (4 sites: TP1, TP2, TP3, TP4)
and Panhandle regions (2 sites: PH1, PH2; Fig. 1) of Texas,
USA. Elevation in the Trans-Pecos region was 750–
2,500m and topography ranged from flat and gently rolling
to steep, rugged mountains. Vegetation communities were

Figure 1. Study sites used to develop detection probability models for helicopter surveys of mule deer in the Trans-Pecos (TP) and Panhandle (PH) regions of
Texas, USA.
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primarily Chihuahuan desert grass and shrublands inter-
spersed with juniper (Juniperus spp.) and pinyon pine (Pinus
spp.) forests. White-tailed deer (TP1, PH1), pronghorn
(Antilocapra americana; TP3, TP4, PH2), and bighorn
sheep (Ovis canadensis; TP3) were present on some sites.
Summers were hot (32–408C), winters were mild (�5 to
108C), and average annual precipitation varied by location
from 17.8–45.7 cm (Cantu and Richardson 1997). One site,
TP2, was surrounded with a 2-m-tall fence erected to deter
mule deer movement; all other Trans-Pecos and Panhandle
sites contained only livestock fences (1.2-m tall). The
Panhandle region was flat to rolling and elevations ranged
from 500–1,400m. The PH2 site contained a section of the
Llano Estacado escarpment, which provided �100m
vertical relief. Vegetation was shortgrass prairie with
wooded drainages, juniper and pinyon pine forests, and a
small amount of agricultural fields planted with winter
wheat. The Panhandle climate was characterized by warm
summers (30–388C) and cold winters (�15 to 58C).
Precipitation averaged 45 cm annually (Cantu and Richard-
son 1997).

METHODS

We captured 35–36 adult (�1 year old) mule deer using the
helicopter net-gun technique (Webb et al. 2008, Jacques
et al. 2009) between 15 December and 10 January on each of
2 study sites annually during December 2007–January 2010
(2 sites/year for 3 years). We captured 20 female and 15–16
male deer on each study site and fitted each deer with a Lotek
GPS 3300L collar (Lotek, Newmarket, Ontario, Canada)
and plastic livestock ear tags (Allflex, Dallas, TX, USA).
Collars recorded global positioning system (GPS) fixes and
stored data onboard. Each collar had a very high frequency
(VHF) beacon and a timed-release mechanism to facilitate
retrieval. We programmed collars to record a location
every 5minutes from 0700–1100 hours and from 1500–
1900 hours, corresponding to our survey periods. Capture
and handling of mule deer were approved by the Institutional
Animal Care and Use Committee at Texas A&M
University-Kingsville (protocol 2007-10-11A) and were
consistent with the guidelines for research on wild mammals
presented in Sikes et al. (2011).

Surveys and Classification of Detection Variables
We conducted surveys between 1 January and 1 March
during 2008–2010. Each study site had a single survey
area designed to be about 30 km2 and contain most of
the collared deer based on the telemetry locations <48 hours
prior to surveys. We conducted 8–9 surveys on each survey
area, with minor shifts in the specific area surveyed
depending on the location of collared deer and weather
conditions that influenced the duration of a survey.
Observers knew that collared deer were available inside
the survey area but not the number of animals nor their
location. We flew surveys from sunrise to 1100 hours and
from 1500 hours to sunset as long as precipitation and wind
conditions were safe, following Texas Parks and Wildlife
Department (2007) survey protocols.

We flew 46 surveys using a Robinson R44 (Robinson
Helicopter Company, Torrance, CA, USA) and 4 surveys
using a Bell Jet Ranger helicopter (Bell Helicopter Textron,
Ft. Worth, TX, USA). The pilot flew transects spaced 180m
apart over the entire survey area, at 15–20m above ground
level and a targeted ground speed of 80 km/hour, using an
aviation GPS unit (Garmin GPSMap 496, Garmin
International, Olathe, KS, USA) in the aircraft for reference.
The left-front and right-rear passengers were the primary
observers; the pilot served as a secondary observer. All
observers had experience flying aerial surveys for mule deer,
did not experience motion sickness, and were trained on
study protocols before their first flight. The fourth passenger
recorded observations and location of groups using a Garmin
Rino 530hcx GPS (Garmin International).
For each group sighted, the observer recorded the number,

sex, and age class (fawn or adult) of animals, deer activity,
distance from transects, vegetation cover type, light
conditions, terrain, and identified marked deer via ear
tags and collar markings. We classified the first animal
detected in the group as inactive (i.e., bedded, standing) or
active (i.e., walking, running). We recorded the perpendic-
ular distance between the flight line and the location where
the group was first detected in 9.1-m increments out to
91m. Primary observers estimated perpendicular distances
but used laser rangefinders to calibrate their visual distance
estimates during the survey. We estimated vegetation
cover type (i.e., open, brush) for observed groups visually in
a 9-m-radius circle centered on the location of the first
animal detected (Anderson and Lindzey 1996, McIntosh
et al. 2009). The open cover class included bare ground,
agriculture fields, and grasslands; we classified a circle with
>10% cover of woody species as brush. We recorded light
conditions of each survey as sunlight (<50% cloud cover) or
cloudy. We classified terrain using features in a 50-m-radius
circle centered on the group. We classified terrain as flat
(<5% slope), rolling (5–30% slopes), or rugged (>30%
slope). After we completed morning surveys, we located via
radio-telemetry marked deer that were in the survey area
but not detected during the survey and recorded their group
size and composition. We also recorded marked deer
detected by the recorder during the survey but not by the
observers.

Classification of Predictors for Undetected Marked
Animals
If collared deer were detected by the recorder but not seen by
observers, we used predictor attributes estimated by the
recorder. Otherwise, we used a geographic information
system (GIS; ArcGIS 9.3, Environmental Systems Research
Institute, Redlands, CA, USA) database to classify detection
probability variables for marked deer that we did not detect
during surveys. We first determined deer available for
sighting during surveys using the tracking analyst extension
of ArcGIS, and included only deer�91m of the transect line
as the helicopter passed. Vegetation analysis was based on
false-color infrared imagery from the National Agricultural
Imagery Program flown during summer 2008 at 1-m
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resolution (U.S. Department of Agriculture, Farm Services
Agency 2014). One study site was subjected to mechanical
brush control between the time we conducted surveys and
2008; we used 2004 imagery for analysis of this site. Using an
unsupervised classification in ERDAS Imagine 9.3
(ERDAS, Norcross, GA, USA), we classified the image
into 20–50 land cover classes depending on the spectral
diversity of each site. A normalized difference vegetation
index model was necessary for the 2004 imagery because the
results of the classified photosynthetic index produced more
reliable results than the classification of raw imagery. We
assigned each land cover class to the cover type classes (open
or brush) used during aerial surveys based on knowledge of
each study site’s vegetative communities and from aerial
photo interpretation, then combined like classes to create a
cover type map for each study site.
We classified activity of deer as the helicopter passed using

changes in the deer’s location before and after the helicopter
passed. Accuracy of the GPS unit in the collar was�10m; we
considered collared deer that moved >20m as active. We
measured perpendicular distance of each deer from the
transect line using the measure tool in ArcGIS 9.3. We
calculated percent area of each vegetation cover class in a 9-
m-radius circle around the location of each deer, and
classified cover as brush (>10% woody cover) or open. We
assigned a single value for light conditions during each survey
unless cloud cover changed during a survey. We assigned a
terrain category using ArcGIS and the 10-m National
Elevation Dataset (U.S. Geological Survey, Sioux Falls, SD,
USA). We buffered locations to a radius of 50m and
calculated a topographic ruggedness index (Riley et al. 1999)
using ArcInfo. We compared index values to visual terrain
estimates at known locations recorded during surveys and set
criteria for terrain estimates from the index to best fit the
index and visual estimates.

Statistical Analyses
We used data from our marked deer and logistic regression
(SAS Institute, Cary, NC, USA) to build models to estimate
the probability of detecting a deer as a function of deer
activity, distance from the transect, vegetation cover type,
light conditions, and terrain. Preliminary analysis indicated
there was no difference between the sexes in detection
probability. If a group had >1 collared deer, we included the
group in the database only once to maintain independence of
observations. We assessed collinearity among our variables
using frequency tables for categorical variables and means
comparisons for relationships between categorical variables
and distance from the transect. Based on these assessments,
we considered all variables in our logistic regression model.
Interactions between some covariates were biologically
realistic, including interactions between cover and activity,
cover and distance, activity and distance, and terrain and
distance. Following the rationale of Steidl (2006), we used a
backwards stepwise elimination procedure, beginning with
the full model (i.e., 5 variables and 4 interactions), removing
interaction terms and then individual variables that did not
explain sufficient variation in the data (P> 0.05). We

retained independent variables in the model if they were
involved in interactions, irrespective of their P-value.
We were able to estimate all attributes for groups not

detected during surveys using our GIS and GPS locations of
deer, except group size. By locating undetected collared deer
after surveys and using collared deer detected only by the
recorder, we acquired group size for 97 groups that were not
detected by observers during surveys. Group size may
influence detection of large mammals during surveys, but our
sample of group sizes for undetected groups was not
sufficient to assess group size in a detection probability
model. As an initial assessment of the influence of group size
on detection probability, we compared the distribution of
group size for groups detected to groups available but not
detected during surveys using plots and chi-square analysis.
Because there were <5 observations for many group sizes
>10 deer, we considered all group sizes >10 deer as a single
category in the chi-square analysis.

Model Evaluation
To evaluate model performance, we computed an indepen-
dent estimate of population size using a Poisson log-normal
mark-resight model in Program MARK (White and
Burnham 1999, McClintock et al. 2009). Because we
knew which marked deer were present on the survey area
from GPS-collar locations, we censored marked deer that
died or that left the study area and fixed f (apparent survival)
to 1 and both g00 and g0 (probability of transitioning to and
probability of remaining in an unobservable state) to 0. We
evaluated all models in which a (intercept of mean resight
rate), U (no. unmarked deer in the population), and s
(individual heterogeneity level) were constant or varied by
survey. Because all study areas except TP2 had �2 models
with some support (Akaike Information Criteria [AIC]
calculated by Program MARK; model weights �0.16), we
used model-averaging to derive population estimates for each
study site (Burnham and Anderson 2002).
We used Pearson’s correlation coefficient to evaluate the

relationship between population estimates derived from
mark-resight, uncorrected survey counts, and our detection
probability model. To assess the effect of our detection
probability model on precision of population estimates, we
assumed that deer density did not vary during the 4–6-week
period when we surveyed each study site. Under this
assumption, differences in deer density among repeated
surveys of a given population were attributed to differences in
detection probability. Detection probability models should
account for such differences and thereby reduce variation
relative to uncorrected counts. We used density instead of
population size to evaluate precision because of variation
among surveys in the area surveyed for a given study site
(Appendix A). We calculated deer density by dividing the
estimated population size from each survey by the area
surveyed, using uncorrected counts, and population estimates
derived frommark-resight or detection probability models. If
the detection probability model increased precision of
population estimates, the magnitude of correction should
be related to the number of deer detected. In other words, if
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few deer are counted during a survey, detection probability
was low and the magnitude of correction should be larger
than if many deer are counted on the same study site,
assuming a closed population. We calculated correlation
coefficients for the relationship between number of deer
counted versus the correction due to applying the detection
probability model.
As a final evaluation of the model, we assessed 2 behavioral

factors that could influence animal availability but could not
be addressed by our model. First, deer that do not move and
remain in heavy cover may have such a low probability of
detection as to be effectively undetectable. Such deer would
not be available for correction by a detection probability
model because of availability bias, similar to marine
mammals that remain underwater for extended time periods
(Marsh and Sinclair 1989). Second, deer may display
movement bias, moving in such a manner that they remain
>91m from the helicopter, or are encountered multiple
times during a survey. To evaluate availability bias, we
quantified the relationship between the proportion of
marked deer that remained inactive in brush cover as the
helicopter passed and the uncorrected density of deer
estimated on that survey. We quantified the effect of
movement bias by computing the number of times marked
deer were �91m of the helicopter divided by the number of
marked deer on the study area during that survey. For both
analyses, we used mixed models with study site as a random
effect; we accounted for repeated measurements by including
study site as the subject. We selected the best-fit covariance
structure based onAIC adjusted for small sample bias (Littell
et al. 2006).

RESULTS

We obtained data from GPS collars on 88 male and 126
female deer. We deployed collars 20–37 days before the first
survey and completed surveys during a 26–43 day period,
depending on study site. Sixteen collared deer died during
the study from predation and vehicle collisions, and 2 collars
failed in year 3.
We flew 50 surveys (8–9 surveys per study site). Area

surveyed averaged 28.7� 4.5 (SD) km2 and varied among
study sites from 24–33 km2 because of variation in the
distribution of collared deer (Appendix A). Environmental
conditions during surveys ranged from calm winds, sunny,
and warm (�188C), to light snow, windy, and temperatures
as low as �118C. Snow did not accumulate on the ground in
an amount to justify investigation.
Considering a collared deer residing in the area surveyed

during a given survey as a potential data point, we had a
potential sample size of 1,305 deer observations during our
50 surveys. However, because of the survey pattern we used,
some deer were available to be detected from the helicopter
>1 time during a survey, resulting in 1,408 observations for
logistic regression analysis (Appendix B). Observers counted
6,476 mule deer in 2,961 groups, including unmarked deer.
Group size averaged 2.2� 2.0, had a median of 1, and ranged
from 1–31. Only 1.3% of observed groups were �10 deer.
Percent marked deer detected averaged 42� 16% and ranged

among surveys from 19–77%. Mean percent of marked male
and female deer detected was 39� 16% and 45� 15%,
respectively. The top mark-resight models did not include a
sex effect on detection probability of deer in 5 of 6 study sites;
therefore, we conducted all subsequent analyses without
regard to sex of the deer.

Detection Probability Model
The 3 interactions between distance from the transect and
cover, terrain, and deer activity did not explain sufficient
variation in the data and were removed from our final model
(P� 0.35). The final model contained an interaction
between cover and activity and all 5 variables evaluated
(Table 1). Probability of detecting deer was negatively related
to distance from the transect and, for deer in brush cover, was

Table 1. Parameter estimates (95% CI) for a detection probability model
for mule deer during helicopter surveys (n¼ 1,408 observations) during
January–February, 2008–2010, in the Trans-Pecos and Panhandle regions
of Texas, USA.

Parametera Class Estimate 95% CI

Intercept �0.066 �1.177–0.986
Activity Active 0.494 �0.578–1.623

Inactive 0
Distance �0.016 �0.021 to �0.012
Cover Open 0

Brush �1.444 �2.502 to �0.330
Light Bright �0.585 �0.860 to �0.312

Cloudy 0
Terrain Flat 1.455 1.069–1.847

Rolling 1.143 0.872–1.418
Rugged 0

Activity� cover Active and brush 1.318 0.138–2.450
Inactive or open 0

a Parameters are activity¼ deer either active or inactive (standing or
bedded); distance¼ perpendicular distance (m) from the transect line to
the group; cover¼ vegetation cover type (open or brush); light¼ light
conditions (bright or cloudy); terrain¼ terrain ruggedness (flat, rolling,
or rugged).
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Figure 2. Predicted detection probability (with 95% prediction intervals on
selected estimates) of mule deer as influenced by deer activity (active,
inactive), vegetation cover type (open, brush), and perpendicular distance
from the survey transect during helicopter surveys in the Trans-Pecos and
Panhandle regions of Texas, USA, January–February, 2008–2010. All
estimates are for mule deer in cloudy light conditions and flat terrain.
Estimates for active deer in open cover type are shifted 1 unit for clarity.
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greater if they were active (P< 0.02; Table 1, Fig. 2).
Detection probability was negatively related to terrain
ruggedness (flat¼ 0.58, 95% CI¼ 0.50–0.67; rolling¼ 0.51,
95% CI¼ 0.47–0.56; rugged¼ 0.25, 95% CI¼ 0.21–0.30;
setting categorical variables at their reference value and
distance from the transect at 50m) and degree of brightness
(cloudy¼ 0.65, 95% CI¼ 0.59–0.71; bright¼ 0.51, 95%
CI¼ 0.47–0.56). Detection probability on the transect line
ranged from 0.11 (95% CI¼ 0.07–0.16) for deer that were
inactive, in bright light, brushy cover, and rugged terrain to
0.87 (95% CI¼ 0.79–0.92) for active deer in overcast
conditions, open cover, and flat terrain.
Our sample of group size for undetected groups (97 groups)

was numerically large, but mean group size (2.2) was small
and it was only logistically possible to obtain an estimate for
11.7% of undetected groups. Although our sample of group
size for undetected groups was not sufficient to evaluate
group size in our detection probability model, the distribu-
tion of the size of mule deer groups detected and those not
detected suggested that group size requires further investi-
gation as a variable influencing detection probability. The
distribution of detected and undetected groups differed by
group size (x29¼ 18.0; P¼ 0.035). For groups that were not
detected during aerial surveys, 75% contained 1–2 deer and

15% contained>3 deer. In contrast, 30% of groups that were
detected contained >3 deer (Fig. 3). Using deer detected by
the recorder but not by observers during surveys could have
biased our sample of undetected groups if group size
influenced detection. The size of undetected groups seen by
the recorder was not significantly different from undetected
groups located from the helicopter after the survey (2.9 vs
2.0; t18.8¼ 1.7, P¼ 0.11). Furthermore, only 21% of
observations (17 of 97) of undetected groups came from
the recorder and average group size of all undetected groups
only changed from 2.0 to 2.2 with their inclusion. Including
groups detected by the recorder improved our assessment of
group size because of the larger sample size but also made the
test conservative because the larger average group size would
have reduced differences in group size between detected and
undetected groups.

Table 2. Model weights used to generate model-averaged population
estimates, by site, based on mark-resight data of mule deer during aerial
surveys for 6 study sites in the Trans-Pecos (TP1–4) and Panhandle (PH1–
2) regions of Texas, USA, January–February, 2008–2010. Only the top 4
supported models are shown.

Site

Model descriptiona TP1 TP2 TP3 TP4 PH1 PH2

a(t), s(.), U(.) 0.37 0.99 0.80 0.76 0.27 0.61
a(.), s(.), U(t) 0.51 0.00 0.16 0.22 0.19 0.37
a(.), s(t), U(.) 0.01 0.00 0.00 <0.01 0.54 <0.01
a(t), s(.), U(t) 0.10 <0.01 0.05 0.01 <0.01 0.01

a a¼ resight rate; s¼ individual heterogeneity; U¼ number of unmarked
deer; t¼ parameter varies by time (survey); “.”¼ null model.
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detected (n¼ 695) and not detected (n¼ 97) during repeated helicopter
surveys at 6 study sites in the Trans-Pecos and Panhandle regions of Texas,
USA, January–February, 2008–2010.
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Figure 4. Number of deer estimated during repeated helicopter surveys of
mule deer on 6 study sites in the Trans-Pecos (TP1–4) and Panhandle
(PH1–2) regions of Texas, USA, January–February, 2008–2010. Estimates
are based on mark-resight of radio-collared deer (x axis) compared to (A)
uncorrected number of deer counted and (B) number of deer counted
adjusted using a detection probability model. Solid lines show a 1:1
relationship and dashed lines show �20% of the equality line. Correlation
coefficients show the strength of the relationship between the population
estimates.
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Evaluation of the Detection Probability Model
Mark-resight analysis indicated that resight rate, number of
unmarked animals in the population, or individual hetero-
geneity varied among surveys and >1 model had some
support, with the exception of site TP2 (Table 2). There was
support for variation in resight rate among surveys on all
study sites, suggesting that visibility of deer varied with
survey occasion. The average lowest resight rate was
0.33� 0.12 and the average highest rate was 0.76� 0.19
(n¼ 6 sites). The number of unmarked deer also varied
among surveys, which may have been influenced by the area
flown (Appendix A) and by movement of deer on and off the
survey area.
Population estimates from uncorrected surveys averaged

49� 10% (n¼ 50) of the population estimated using our
detection probability model. Correlation coefficients for the
relationship between mark-resight population estimates and
either uncorrected population counts (r¼ 0.79) or popula-
tion estimates derived from our detection probability model
were similar (r¼ 0.77; Fig. 4). Population estimates from
uncorrected surveys and from detection probability models
averaged 48� 11% and 101� 26%, respectively, of those
derived from mark-resight estimates.
Our detection probability model did not improve precision

relative to uncorrected counts of deer. The coefficient of
variation (CV) from repeated counts using estimates from
the detection probability model averaged 17% greater than
for uncorrected density estimates and standard deviation
increased over 2-fold (Table 3). Mark-resight population
estimates had greater precision, and CV averaged 50% of that
from uncorrected density estimates. Within a study area, the
magnitude of correction in population size derived from our
detection probability model was not clearly related to the
number of deer counted during a given survey (Fig. 5).
Correlation coefficients calculated separately for each study
site between the correction and the density of deer counted
ranged from �0.67 to 0.58 (P� 0.07).
Variation in deer density among surveys on a given study

site was weakly related to availability bias (i.e., % of deer
inactive in brush cover; parameter estimate¼�0.023,

SE¼ 0.013, P¼ 0.08). Our analysis suggested we counted
fewer deer as proportion of hidden deer increased, but the
effect size was small. The percent of collared deer classified as
potentially hidden across all surveys ranged from 0–52%.
Thus, our hidden-deer variable could explain variation in
deer density no larger than 1.2 deer/km2 (derived by
multiplying the coefficient from the relationship, �0.023,
by the largest percent of potentially hidden deer, 52%), even
though deer density ranged �7 deer/km2 among surveys of a
given site (x-axis, Fig. 4). There was stronger evidence that
deer movements, resulting in either deer avoiding the
helicopter entirely or being available to be seen more than
once, were related to variation in deer density across multiple
surveys of a given study area (parameter estimate¼ 1.81,
SE¼ 0.68, P¼ 0.01). Our index of deer movement varied
from 0.74 (i.e., marked deer moved in such a way as to avoid
the helicopter) to 1.62 (i.e., marked deer moved in such a way
as to be available to be seen 1.6 times each). Because the
median deer movement index was 1.1, double-counting
animals appeared to be a more important problem than deer
moving in such a manner as to not be within 91m of the
helicopter. Collared deer moved in such a manner as to avoid
the helicopter (i.e., deer movement index <1) in 30% of our
surveys.

DISCUSSION

Detection probability models are used to address negative
bias in population estimates derived from aerial surveys
(Samuel et al. 1987). Applying our detection probability
model resulted in population estimates that were double that
of uncorrected surveys, and therefore reduced bias in aerial
surveys for mule deer in the Chihuahuan Desert and
southern Great Plains. Previous studies of detection
probability have reached conflicting conclusions about the
importance of vegetation cover type, depending on the
species and habitats involved (Biggins and Jackson 1984,
Gasaway et al. 1985, Anderson and Lindzey 1996, Cogan

Table 3. Coefficient of variation (CV) and standard deviation (SD) for
estimates of population density derived from repeated surveys of mule deer
for uncorrected observations, and observations corrected using mark-resight
and a detection probability model for 6 study sites in the Trans-Pecos
(TP1–4; n¼ 8 surveys) and Panhandle (PH1–2; n¼ 9 surveys) regions of
Texas, USA, January–February, 2008–2010.

Observed Mark-resight

Detection
probability
model

Study site CV SD CV SD CV SD

TP1 0.30 1.80 0.18 1.77 0.35 3.95
TP2 0.34 2.35 0.06 0.81 0.29 3.53
TP3 0.17 0.88 0.15 2.03 0.26 3.70
TP4 0.26 1.02 0.12 1.16 0.26 2.28
PH1 0.15 0.62 0.08 0.72 0.20 1.60
PH2 0.20 0.33 0.12 0.38 0.30 1.14
Average 0.24 1.17 0.12 1.15 0.28 2.70

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 2 4 6 8 10

Co
rr
ec
�o

n
fa
ct
or

Deer density

TP1

TP2

TP3

TP4

PH1

PH2

Figure 5. Correction factor derived from the ratio of corrected population
size (using a detection probability model) to uncorrected number of deer
counted during repeated helicopter surveys of mule deer on 6 study sites in
the Trans-Pecos (TP1–4) and Panhandle (PH1–2) regions of Texas, USA,
January–February, 2008–2010. The x-axis is deer density calculated from
uncorrected number of deer counted divided by the area surveyed.

Zabransky et al. � Mule Deer Detection Probability Model 1385

 19372817, 2016, 8, D
ow

nloaded from
 https://w

ildlife.onlinelibrary.w
iley.com

/doi/10.1002/jw
m

g.21143 by C
ochrane C

anada Provision, W
iley O

nline L
ibrary on [09/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and Diefenbach 1998, Allen et al. 2005). Cover type was a
significant factor influencing detection probability in our
study, reinforcing the need to develop detection probability
models in the habitats to which they will be applied. Activity
had a large potential to affect detection probability because
only 15% of collared, inactive deer were detected during the
study, compared to 50% of active deer. For the model to
correct for low detection probability of inactive deer, at least
some inactive groups need to be detected during surveys. Our
detection rate of inactive groups was 0.59 groups/100 km of
transect and thus hundreds of kilometers of transect must be
flown to reasonably account for inactive deer. Animal activity
was a factor influencing detection probability from the
helicopter for some (Gasaway et al. 1985, Ackerman 1988,
Anderson et al. 1998, Allen et al. 2005), but not all studies
(Samuel et al. 1987, Anderson and Lindzey 1996, and Cogan
and Diefenbach 1998). Anderson et al. (1998) noted that
activity may not influence detection probability during
surveys with snow cover, but activity may be important
during surveys with no snow cover. An analogous interaction
occurred in our results in which animal activity influenced
detection probability more in brush than in open cover.
Detection probability was greater in cloudy conditions,

similar to the findings of Allen et al. (2005) but not Anderson
and Lindzey (1996). Our study design did not allow us to
verify the underlying cause of sunlight effects. However,
bright sunlight increased the contrast between sunny and
shady areas, potentially reducing the ability of observers to
detect deer in the shade. Furthermore, morning and evening
sunlight caused �1 observer to look into the sun, whereas
other observers may have been affected by glare on the
helicopter windows.
As in other studies of aerial deer surveys (DeYoung et al.

1989, White et al. 1989), detectability of deer declined with
distance from the flight path. However, our data and other
studies suggested that distance sampling alone would not be
a viable technique to correct for undetected groups of deer
because not all deer on the flight transect are observed
(DeYoung et al. 1989,White et al. 1989), thus violating a key
assumption of distance sampling (Burnham et al. 1980). As
with detection probability models, distance sampling can not
address the problem of availability bias resulting from
animals whose probability of being seen is near zero. One
reason distance from the transect has not been reported as an
important variable in detection probability models is that
methods used by other studies often did not allow
measurements of distance from the transect for animals
that were not detected.
Our study used location data collected from GPS collars to

identify cases of missed detection and is one of the few
studies using fine-scale GPS location data in development of
detection probability models. Deploying GPS collars on 214
deer provided a large sample size and detailed information
about deer movement and location during surveys. Whereas
many other studies obtained information on undetected
animals after the survey was completed (Samuel et al. 1987,
Anderson et al. 1998, McIntosh et al. 2009), we were able to
analyze location data taken every 5minutes. As a result, we

were able to incorporate variables such as distance from the
survey transect and deer activity. We also were able to use
multiple re-sighting opportunities of deer whose movements
intersected survey transects >1 time during a survey and to
exclude animals that were not available for detection because
their movements during the survey caused them to be located
>91m from the helicopter. Both situations would have been
difficult to address using VHF radio-collared or ear-tagged
deer and could bias coefficients in detection probability
models if not accounted for.
Although GPS technology was an excellent tool in data

collection, our sample of marked deer was sufficiently large
that we were able to collect group size information only from
a proportion of undetected marked deer during each survey.
Furthermore, because mean group size was 2.2, there were
many potential groups during each survey, and these could
not be logistically located in a reasonable amount of time
after each survey. Other studies used additional aerial
platforms (e.g., fixed-wing aircraft) or ground crews to locate
undetected groups concurrent with survey effort (Samuel
et al. 1987, Bodie et al. 1995, Rice et al. 2009), but we were
unable to do so. Nonetheless, even our limited sample of
undetected deer provided evidence that group size influenced
detection probability, a finding supported by other studies
(Samuel et al. 1987, Ackerman 1988, Anderson and Lindzey
1996, Anderson et al. 1998, Cogan and Diefenbach 1998).
Excluding group size from the detection probability model
could result in biased population estimates if applied to
populations with a distribution of group sizes that differed
from those used during model development. For example,
populations with larger groups than used in model
development, such as might occur in the vicinity of
agricultural fields, would result in overestimates because
the larger groups are more visible than the average group size
used during model development.
Population estimates from repeated aerial surveys of closed

populations often are highly variable (Beasom et al. 1986), a
phenomenon we encountered. Part of this variation is related
to variation in detection probability, which ranged from
0.19–0.77 in our surveys, similar to that reported for white-
tailed deer in southwestern rangelands (Beasom et al. 1986).
Detection probability models should improve precision of
population estimates by accounting for variation in detection
probability among surveys. However, our detection proba-
bility model had lower precision relative to uncorrected
counts. One reason our detection probability model did not
improve precision is that, on any given study site, the
magnitude of correction from applying the detection
probability model was not related to the density of deer
counted (Fig. 5). Furthermore, variation in the magnitude of
correction (average CV¼ 0.15) was small relative to variation
in density of deer counted on repeated surveys (average
CV¼ 0.24; Table 3) within a study site.
A relatively consistent level of correction may occur because

detection probability models can correct only for perception
bias (Marsh and Sinclair 1989), which may not vary
dramatically when averaged across all the groups of animals
detected during a survey. However, some deer may be
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essentially undetectable. This form of detection bias, referred
to as availability bias (Marsh and Sinclair 1989), cannot be
addressed by detection probability models. Deer that are
unavailable because they are hidden (e.g., bedded in brush
cover) or because they move outside the survey transect as the
helicopter passes contribute to availability bias. DeYoung
et al. (1989) reported evidence of undetectable deer during
studies with marked white-tailed deer in southern Texas.
Differences in availability bias among surveys could add
variability to population surveys that cannot be corrected
using detection probability models. Our analyses suggest that
variation in potentially hidden deer (i.e., deer in brush that
do not move as the helicopter passes) and in deer movements
could influence availability bias. However, the effect of deer
movements was attributed to both deer that moved away
from the helicopter and deer that moved in such a manner as
to be available for detection more than once during a survey.
This latter effect was possible because we flew adjacent,
parallel transects. Surveys flown in widely-spaced transects
will not be susceptible to such double counting and thus
should not be a concern for state agencies surveying deer over
large areas. As a conservative recommendation of distance
between transects to avoid recounting deer during a single
survey, we calculated daily movement of GPS-collared male
deer during survey days for 21 surveys. We used males
because their daily movements were larger than females.
Male mule deer moved an average of 3.9� 0.9 km/day (range
2.6–6.2 km/day; n¼ 21 surveys), suggesting that transects
spaced 4 km apart would not be susceptible to recounting the
same deer during aerial surveys. Finally, factors other than
those included in our model, such as group size, may also
influence detection probability.
Mark-resight estimates are the best population estimates

we had available and we used them as a standard to evaluate
uncorrected counts and estimates derived from our detection
probability model. Results of mark-resight analysis also
provided insight into variation in population estimates
among survey occasions on a given study site. Resight rate
varied among survey occasions and could represent variation
not included in our detection probability model. Movement
of deer into and out of the survey areas also may have
occurred, causing the number of unmarked animals to vary.
We found support for variation in the number of unmarked
animals on all study sites except TP2, which was surrounded
by a 2-m-tall fence that clearly defined the area to be flown
and restricted (but did not stop) movement of animals into
and out of the study site. Finally, collared deer could have
responded to the helicopter during surveys differently than
deer without collars because collared deer had been
previously captured using a helicopter. If this difference in
behavior caused collared deer to have a lower resight rate
than deer without collars, mark-resight models would have
overestimated population size.
Population estimates derived from our detection probabil-

ity model were an improvement relative to uncorrected
counts. Undercounting group size can result in detection-
probability adjusted estimates that are biased low (Cogan and
Diefenbach 1998,Walsh et al. 2009).We found no such bias,

perhaps because mule deer in our study area do not form large
herds during winter (�x group size¼ 2.2), thus reducing the
likelihood of undercounting group size. Mark-resight
models provided more realistic population estimates than
detection probability models for elk in forests of western
Washington, USA because a large proportion of elk had low
detection probabilities in the heavily forested study area
(McCorquodale et al. 2013). Conversely, mark-resight and
detection probability models resulted in similar population
estimates for pronghorn in more open habitat of the northern
Great Plains (Jacques et al. 2014). Similar to elk in western
Washington (McCorquodale et al. 2013), mule deer in Texas
rangelands appear to have low and variable rates of detection
among repeated surveys. This variation in detection
probability explains high count variation in repeated surveys;
if this reasoning is correct, availability bias must be addressed
to obtain precise population estimates for mule deer in
Chihuahuan Desert and southern Great Plains habitats. In
practice, availability bias cannot be addressed without
marking animals, which requires additional logistical and
financial support.

MANAGEMENT IMPLICATIONS

Relative to uncorrected counts, our detection probability
models increase accuracy of aerial surveys for mule deer in the
southern Great Plains and Chihuauan Desert. We recom-
mend detection probability models when population surveys
using marked animals are infeasible, but recognize further
refinement is necessary to improve precision relative to
uncorrected counts. Group size may influence detection
probablity and thus our detection probability model should
not be used if the distribution of group sizes observed differs
from that in the populations we sampled (�x¼ 2.2� 2.0 deer/
group, median¼ 1).
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APPENDIX A

APPENDIX B

Area (km2) surveyed during repeated helicopter surveys for mule deer on 6 study sites in the Trans-Pecos (TP1–4) and Panhandle (PH1–2) regions of Texas,
USA, January–February, 2008–2010.

Survey no.

Study site 1 2 3 4 5 6 7 8 9 �x

TP1 22.0 28.2 25.1 28.3 24.6 29.1 33.5 35.0 28.2

TP2 29.4 27.9 26.6 28.9 24.9 26.5 28.3 29.0 27.7

TP3 30.3 34.4 25.2 36.7 31.1 32.9 20.9 32.9 30.6

TP4 24.4 26.6 26.5 23.8 26.6 19.1 28.2 20.9 24.5

PH1 24.6 30.2 24.3 29.2 28.9 28.3 27.9 27.1 26.9 27.5

PH2 26.0 28.9 32.0 39.7 35.6 39.7 30.6 32.9 32.9 33.1

Number of marked mule deer available that were detected or not detected by individual variable during repeated helicopter surveys at 6 sites in the Trans-
Pecos and Panhandle regions of Texas, USA, January–February, 2008–2010.

No. available

Variable States Not detected Detected Proportion detecteda

Activity Inactive 294 53 0.15
Active 534 527 0.50

Distance (m) 0 70 138 0.66
9 54 58 0.52

18 66 8 0.11
27 93 133 0.59
36 77 53 0.41
45 86 45 0.34
55 93 44 0.32
64 100 42 0.30
73 90 22 0.20
81 99 37 0.27

Cover type Open 77 67 0.53
Brush 751 513 0.59

Light Bright 663 406 0.38
Cloudy 165 174 0.51

Terrain Flat 100 98 0.55
Rolling 367 360 0.53
Rugged 361 122 0.31

Group size 1 44 217
2 27 116
3 10 73
4 7 55
5 2 38
6 30
7 4 15
8 5
9 1 6

10 7
11 3
12 6
13 1
14 3
15 1
16 1
17 1

a Group size was recorded for 11.7% of unobserved groups, so proportion detected was not calculated.
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