11.0 Appendix A

Appendix A - Table A1. Summary of the <u>assumptions</u> and pros/cons of the different <u>modelling approaches</u> (adapted from Wearn & Glover-Kapfer [2017] and Clarke et al. [2022]).

Objective	Approach	Assumptions	Pros	Cons	References
<u>Species</u> inventory	<u>Species</u> inventory	• No formal <u>assumptions</u> ¹	 Maximum flexibility for study design (e.g., <u>camera days per</u> <u>camera location</u> or use of <u>lure</u>²)¹ 	 Not reliable estimates for inference ("considered as unfinished, working drafts")¹ 	¹ Wearn & Glover- Kapfer, 2017
Species richness	Species richness	 <u>Camera locations</u> are <u>randomly</u> <u>placed</u>¹ <u>Camera locations</u> are independent¹ <u>Detection probability</u> of different species remains the same¹ ("true" species richness estimation involves attempting to correct for "<u>imperfect</u> <u>detection</u>"¹) Sampling effort is comparable between <u>camera locations</u>³¹ 	 Fundamental to ecological theory and often a key metric used in management¹ Simple to analyze, interpret and communicate¹ Models exist to estimate asymptotic species richness, including unseen species (simple versions of these models - "EstimateS" and the "vegan" R-packages)¹ 	 Dependent on the scale (as captured in the species-area relationship)¹ All species have equal weight in calculations, and community evenness is disregarded¹ Insensitive to changes in abundance, community structure and community composition¹ 	 ² Rovero et al., 2013 ³ MacKenzie et al., 2002 ⁴ MacKenzie et al., 2006 ⁵ Rowcliffe & Carbone, 2008 ⁶ Lambert, 1992
Species diversity	Species diversity	 <u>Camera locations</u> are <u>randomly</u> <u>placed</u>¹ <u>Camera locations</u> are independent¹ <u>Detection probability</u> of different species remains the same¹ 	 Captures evenness and richness (although some indices only reflect evenness)¹ Most indices are easy to calculate and widely implemented in software packages (e.g., "EstimateS" and "vegan" in R)¹ 	 Many indices exist, and it can be difficult to choose the most appropriate¹ Comparing measures across space, time and studies can be very difficult¹ Insensitive to changes in community composition¹ (however, this may be conditional on study design) 	 ⁷ Mullahy, 1986 ⁸ McCullagh & Nelder, 1989 ⁹ Heilbron 1994 ¹⁰ Karanth & Nichols, 1998 ¹¹ Karanth, 1995
Species diversity	β-diversity	<u>Camera locations</u> are <u>randomly</u> <u>placed</u> ¹	 Can be used to track changes in community composition¹ 	 No single best measure for all purposes¹ 	¹² Clarke et al., 2023

<u>Objective</u>	Approach	Assumptions	Pros	Cons	References
		 Randomness and independence¹ Samples are assumed to have been taken at random from the broader population of sites¹ 	 Plays a critical role in effective conservation prioritization (e.g., designing reserve networks)¹ Important for detecting changes in the fundamental processes¹ 	 Interpretation/communication not always straightforward¹ Scale-dependent (i.e., influenced by the size of the communities that are being included)¹ 	 ¹³ Noss et al., 2003 ¹⁴ Kelly et al., 2008 ¹⁵ Moeller et al., 2018 ¹⁶ Chandler &
Occupancy 3	Occupancy models ³	 Occupancy is constant^[3] (abundance is constant)⁴ Camera locations are independent⁴ Detections are independent⁴ The probability of occupancy and detection are constant across all camera locations within a stratum or can be modelled using covariates⁴ Species are not misidentified⁴ 	 Does not require individual identification⁴ Only requires detection/non- detection data for each site¹ Relatively easy-to-use software exists for fitting models (PRESENCE, MARK, and the "unmarked" R package)¹ "Open" models exist that allow for the estimation of site colonization and extinction rates^{1,4} Multi-species <u>occupancy</u> <u>models^[3] allow the inclusion of interactions among species while controlling for <u>imperfect</u> <u>detection</u>¹</u> 	 Occupancy^[3] only measures distribution; it may be a misleading indicator of changes in abundance¹ Interpretation/communication of results may not be straightforward (if the scale of movement is much larger than the <u>camera spacing</u> the results should be interpreted as "probability of use" rather than <u>occupancy</u>)¹ 	Royle, 2013 ¹⁷ Royle et al., 2009 ¹⁸ Borchers & Efford, 2008 ¹⁹ Efford, 2004 ²⁰ Royle & Young, 2008 ²¹ O'Brien et al., 2011 ²² Doran- Myers, 2018 ²³ Morin et al., 2022 ²⁴ Green et al., 2020
Relative abundance indices	Poisson Zero-inflated Poisson (ZIP) ⁶ Negative binomial (NB) ⁷	• Many <u>assumptions</u> exist (since used for many approaches) ¹	 Simple to calculate and technically possible (even with small sample sizes when robust methods might fail)¹ <u>Relative abundance indices</u> often do correlate with abundance¹ 	 Difficult to draw inferences (a large number of <u>assumptions</u>); comparisons across space, time, species, and studies are difficult¹ Requires stringent <u>study design</u> (e.g., random sampling, standardized methods)¹ 	 ²⁵ Parmenter et al., 2003 ²⁶ Noss et al., 2012 ²⁷ Sollmann et al., 2013a

Objective Approac	h <u>Assumptions</u>	Pros	Cons	References
Population Capture-	Demographic closure (i.e., no births	Calibration with independent <u>density</u> estimates is possible ¹	 Detection rates from remote cameras cannot be used as an index to compare relative abundance across species⁵ Requires that individuals are 	 ²⁸ Sollmann et al., 2013b ²⁹ Rich et al., 2014 ³⁰ Whittington et al., 2018 ³¹ Royle & Nichols, 2003 ³² Efford et al., 2009b
size / recapture Absolute (CR) / abundance capture- / vital rates mark- / Density; recapture Marked (CMR) ^{10,11} population	or deaths) ¹ Geographic closure (i.e., no immigration or emigration)¹ All individuals have at least some probability of being detected² Sampled area encompasses the full extent of individuals' movements^{2,10} Activity centres are randomly dispersed¹² Activity centres are stationary¹² 	 abundance index that controls for imperfect detection¹ Easy-to-use software exists to implement (e.g., CAPTURE); MARK Implements more complicated models with covariates (and must be used for mark-resight modelling)¹ Can use the robust design with "open" models to obtain recruitment and survival rate estimates¹ 	 distinguishable.¹ However, CR^[10,11] has also been used to estimate abundance of species that lack natural markers but that have phenotypic and/or environment-induced characteristics^{2,13,14} When the sample size is large enough to reliably estimate density with CR, ^[10,11] individuals are unlikely to have a unique marker^{2,13,14} Dependent on the surveyed area, which is difficult to track and calculate¹ Requires a minimum number of captures and recaptures¹ Relatively stringent requirements for study design (e.g., no "holes" in the trapping grid)¹ Geographic closure at the plot level, which is often unrealistic¹ 	2009b ³³ Royle et al., 2014 ³⁴ Augustine et al., 2019 ³⁵ Burgar et al., 2018 ³⁶ Sun et al., 2022 ³⁷ Sollmann, 2018 ³⁸ Augustine et al., 2018 ³⁹ Davis et al., 2021 ⁴⁰ Rowcliffe et al., 2013

<u>Objective</u>	<u>Approach</u>	Assumptions	Pros	Cons	References
Density /	<u>Spatially</u> explicit	• Demographic closure (i.e., no births or deaths) ¹	 Produces direct estimates of density or population size for 	 Assumes a specific relationship between abundance and detection¹ Density cannot be explicitly estimated because the true area animals occupy is never measured (only approximated)¹⁶ Requires that individuals are identifiable¹ 	 ⁴² Rowcliffe et al., 2014 ⁴³ Rowcliffe et al., 2016 ⁴⁴ Rowcliffe et al., 2011 ⁴⁵ Cusack et al., 2015 ⁴⁶ Nakashima
size; <u>Marked</u> population	capture recapture (SECR) ^{17–20} (also referred to as <u>Spatial</u> <u>capture-</u> <u>recapture</u> [SCR])	 Detection probability of different individuals is equal¹ or, for SECR, individuals have equal detection probability at a given distance from the centre of their home range¹ Detections of different individuals are independent¹ Detections of different individuals are independent¹ Behaviour is unaffected by cameras and marking¹ Individuals do not lose marks¹ Individuals are not misidentified¹ Surveys are independent¹ For conventional models, geographic closure (i.e., no immigration or emigration)¹ Spatially explicit models have further assumptions about animal movement^{1,17,21}; these include: Home ranges are stable¹ Movement is unaffected by cameras¹ Camera locations are randomly placed with respect to the 	 explicit spatial regions¹⁶ Allows researchers to mark a subset of the population/to take advantage of natural markings¹ Estimates are fully comparable across space, time, species and studies¹ <u>Density</u> estimates obtained in a single model, fully incorporate spatial information of locations and individuals¹ Both likelihood-based and Bayesian versions of the model have been implemented in relatively easy-to-use software (DENSITY and SPACECAP, respectively, as well as associated R packages)¹ Flexibility in study design (e.g., "holes" in the trapping grid)¹¹ "Open" <u>SECR</u>^[17–20] models exist that allow for estimation of recruitment and survival rates¹ 	 Requires that a minimum number of individuals are trapped (each recaptured multiple times ideally)¹ Requires that each individual is captured at a number of <u>camera locations</u>¹ Multiple cameras per station may be required to identify individuals; difficult to implement at large spatial scales as it requires a high density of cameras^{12,23} May not be precise enough for long-term monitoring²⁴ Cameras must be close enough that animals are detected at multiple <u>camera locations</u>¹ (may be challenging to implement at large scales as many cameras are needed)"¹⁶ ½ MMDM (Mean Maximum Distance Moved) will usually lead to an under -estimation of home range size and thus overestimation of <u>density</u>^{1,25,26} 	 ⁴⁰ Nakasnima et al., 2018 ⁴⁷ Meek et al., 2016 ⁴⁸ Anile & Devillard, 2016 ⁴⁹ Huggard, 2018 ⁵⁰ Becker et al., 2022 ⁵¹ Warbington & Boyce, 2020 ⁵² Howe et al., 2017 ⁵³ Borchers & Marques, 2017 ⁵⁴ Palencia et al., 2021 ⁵⁵ Gilbert et al., 2021

<u>Objective</u>	<u>Approach</u>	Assumptions	Pros	Cons	References
Objective	Approach Spatial mark- resight (SMR) (type of SCR model) ^{16,27,28}	Assumptions distribution and orientation of home ranges1 o Distribution of home range centres follows a defined distribution (Poisson, or other, e.g., negative binomial)1 • Demographic closure (i.e., no births or deaths) ^{12,16} • Geographic closure (i.e., no immigration or emigration) ^{12,16} • Individuals do not lose marks1 (for maximum precision), but SMR ^[16,27,28] does allow for inclusion of marked but unidentified resighting detections ^{27,29} • Individuals are not misidentified1 • Failure to identify marked individuals is random ^{12,30} • Marked animals are a random	 Pros <u>SECR</u>^[17–20] accounts for variation in individual <u>detection</u> <u>probability</u>; can produce spatial variation in <u>density</u>; <u>SECR</u>^[17–20] more sensitive "to detect moderate-to-major populations changes" (+/-20-80%)^{12,23} Estimates are fully comparable to <u>SECR</u>^[17–20] of <u>marked</u> species¹ Can be applied to a broader range of species than <u>SECR</u>^{[17–20]1} Allows researcher to take advantage of natural markings¹ Allows researcher to mark a subset of the population (note - precision is dependent on number of <u>marked</u> individuals in a population)¹ 	 Cons Animals may have to be physically captured and <u>marked</u> if natural marks do not exist on enough individuals¹ All individuals must be identifiable¹ Allows for <u>density</u> estimation for a <u>unmarked population</u>, but the precision of the <u>density</u> estimates are likely to be very low value¹ Remains poorly tested with camera data, although it offers promise¹ 	References ⁵⁶ Twining et al., 2022 ⁵⁷ Bessone et al., 2020 ⁵⁸ Loonam et al., 2021 ⁵⁹ Bridges & Noss, 2011 ⁶⁰ Rovero & Zimmermann , 2016
		 sample of the population with home ranges located inside the state space^{28,29} Detections are <u>independent</u>^{12,16} Individuals have equal <u>detection</u> <u>probability</u> at a given distance from the centre of their home range¹ Detections of different individuals are <u>independent</u>¹ Movement is unaffected by cameras¹ Behaviour is unaffected by cameras and marking¹ <u>Camera locations</u> are <u>randomly</u> <u>placed</u> relative to the distribution and orientation of home range¹ 		 Density estimates are likely less precise than with <u>SECR</u>^[17–20] or <u>REM</u>, unless a large proportion of the population have marks¹ Requires sampling points to be close enough that individuals encounter multiple cameras¹ 	

<u>Objective</u>	<u>Approach</u>	Assumptions	Pros	Cons	References
<u>Objective</u>	Approach	Assumptions • Camera locations are close enough together that animals are detected at multiple cameras ^{12,16} • Surveys are independent ¹ • Home ranges are stable ¹ • Distribution of home range centres follows a defined distribution (Poisson, or other, e.g., negative binomial) ¹	Pros	Cons	References
		 Animals' activity centres are randomly dispersed^{12,16} Animals' activity centres are stationary^{12,16} All animals have stable activity centres within home ranges where detection probability is greatest^{27,31,32} 			
Density; Unmarked population	Spatial count (SC) / Unmarked spatial capture- recapture (type of SCR model) ^{16,33}	 <u>Camera locations</u> are close enough together that animals are detected at multiple cameras^{12,16} Demographic closure (i.e., no births or deaths)^{12,16} Geographic closure (i.e., no immigration or emigration)^{12,16} Detections are <u>independent</u>^{12,16} Animals' activity centres are randomly dispersed^{12,16} Animals' activity centres are stationary^{12,16} 	• Does not require individual identification ¹²	 Produces imprecise estimates even under ideal circumstances unless supplemented with auxiliary data (e.g., telemetry)^{16,22,27,28} Precision decreases with an increasing number of individuals detected at a camera"²³ (as overlap of individuals' home ranges increases) ^{12,34} Not appropriate for low <u>density</u> or elusive species when recaptures too few to confidently infer the number and location of activity centres"^{12,35} Not appropriate for high-<u>density</u> populations with evenly spaced activity centres (camera[- specific] counts will be too similar and impair activity centre inference)"¹² 	

<u>Objective</u>	<u>Approach</u>	Assumptions	Pros	Cons	References
				 Ill-suited to populations that exhibit group-travelling behaviour"^{12,36} 	
				 Study design (camera arrangement) can dramatically affect the accuracy and precision of <u>density</u> estimates"^{12,37} 	
				 Cameras must be close enough that animals are detected at multiple <u>camera locations</u> (may be challenging at large scales as many cameras are needed)"^{12,16} 	
Density / population size; Partially Marked population	Spatial Partial Identity Model (Categorical SPIM; catSPIM) ^{34,36} (Extension of SC model using animal traits (e.g., Sex Class, antler points) and model parameters)	 Same as <u>SC</u>^{12,34,36} Camera must be close enough together that animals are detected at multiple cameras^{12,16} Demographic closure (i.e., no births or deaths)^{12,16} Geographic closure (i.e., no immigration or emigration)^{12,16} Detections are independent^{12,16} Activity centres are randomly dispersed^{12,16} Activity centres are stationary^{12,16} Each categorical identifier (e.g., male/female, collared/not collared, etc) has fixed number of possibilities³⁶ All possible values of categorical identifiers occur in the population with probabilities that can be estimated^{12,34,36} Every individual is assigned "full categorical identify" (i.e., "set of 	• May produce more precise and less biased <u>density</u> estimates than <u>SC</u> with less information ^{12,36}	 Sensitive to non-independent movement (e.g., group-travel; can cause over-dispersion and bias estimates^{12,36}); may limit application to solitary species only^{12,36} May produce be less reliable/accurate estimates for high-<u>density</u> populations^{12,36} Too few categorical identifiers/ possibilities can result in mis- assignments and overestimating <u>density</u>^{12,25,34} 	

<u>Objective</u>	<u>Approach</u>	Assumptions	Pros	Cons	References
		 traits given all categorical identifiers and possibilities")^{12,34} Individuals' identifying traits do not change during the survey (e.g., antlers present/absent)³⁴ 			
Density / population size; Partially Marked population	Spatial Partial Identity Model (2- flank SPIM) ³⁸ (extension of SCR model augmented with data from partially- identifying images)	 Same as SCR^{12,38} Capture processes for left-side, right-side and both-side images are independent^{12,38} 	 Same as SCR^{12,38} Improved precision of <u>density</u> estimates relative to SCR^{12,38,39} Many study designs can be used (<u>paired sample stations</u>, single <u>camera locations</u>, and hybrids of both paired- and single <u>camera locations</u>^{12,38,39} Can be used with single-camera and hybrid sampling designs, and therefore requires fewer cameras (or sample more area) than SCR^{12,38} May be more robust to non-independence than SC^{12,38} 	 Computationally intensive^{12,38} Increased precision is less pronounced in high-<u>density</u> populations^{12,38} 	
<u>Density;</u> <u>Unmarked</u>	Random encounter models (REM) ^{40,41}	 Demographic closure^{22,40} (i.e., no births or deaths) Geographic closure^{22,40} (i.e., no immigration or emigration) <u>Camera locations</u> are randomly placed relative to animal movement^{1,40} Animal movement is unaffected by the cameras^{1,40} Accurate counts of independent "contacts" <u>camera locations</u>^{1,40} Unbiased estimates of animal activity levels and speed^{1,42,43} Camera's detection zone can be approximated well using a 2D cone 	 Flexible study design (e.g., "holes" in grids allowed, camera spacing less important)¹ Can be applied to unmarked species¹ Allows community-wide <u>density</u> estimation¹ Outputs also include informative parameter estimates (i.e., animal speed and activity levels, and detection zone parameters)¹ Comparable estimates to SECR[^{17–20}]¹ 	 Requires relatively stringent study design, particularly (e.g., random sampling and use of bait or lure)¹ Requires independent estimates of animal speed or measurement of animal speed within videos¹ No dedicated, simple software¹ Random relative to animal movement, grid preferred, avoid multiple captures of same individual, area coverage important for abundance estimation² Possible sources of error include inaccurate measurement of 	

Objective	<u>Approach</u>	Assumptions	Pros	Cons	References
		 shape, defined by the radius and angle parameters⁴⁴ If activity and speed are to be estimated from camera data, two additional assumptions: All animals are active during the peak daily activity⁴² Animals moving quickly past a camera are not missed⁴³ 	 Does not require marked animals or identification of individuals^{22,40} Can use camera spacing without regard to population home range size^{22,40} Direct estimation of <u>density</u>; avoids ad-hoc definitions of study area⁴⁰ 	detection zone and movement rate ^{41,45}	
<u>Density;</u> <u>Unmarked</u>	Random encounter and staying time (REST) ⁴⁶	 Demographic closure (i.e., no births or deaths) and geographic closure (i.e., no immigration or emigration) (animal density is constant during the survey)⁴⁰ Detection is perfect¹ (detection probability "p" = 1) unless otherwise modelled⁴⁶ <u>Camera locations</u> are representative of the available habitat⁴⁶ <u>Camera locations</u> are randomly placed relative to the spatial distribution of animals⁴⁶ Animal movement and behaviour are not affected by cameras⁴⁶ Detections are independent⁴⁶ The observed distribution of staying time in the focal area fits the distribution of movement⁴⁶ The observed staying time must follow a given parametric distribution⁴⁶ 	• Provides unbiased estimates of animal <u>density</u> , even when animal movement speed varies, and animals travel in pairs ⁴⁶	 Attraction or aversion to cameras is exhibited in some species⁴⁷ and could affect the time within the detection zone and subsequently affect estimates of <u>density</u>²² Requires accurate measurements of the area of the camera detection zone, which has been a challenge in previous studies^{22,44–46,48} Mathematically challenging⁴⁵ 	
<u>Density;</u> <u>Unmarked</u>	<u>Time in front</u> of the <u>camera</u> (TIFC) ^{49–51}	 <u>Camera locations</u> are <u>randomly</u> <u>placed</u> or representative relative to animal movement⁵⁰ Movement is unaffected by the cameras⁵⁰ 	 Does not require individual identification⁵¹ Makes no <u>assumption</u> about home range⁵¹ 	 Requires careful calculation of the effective area of detection⁵¹ A high level of measurement error⁵⁰ 	

Objective	Approach	Assumptions	Pros	Cons	References
		 Reliable detection of animals in part of the camera's <u>FOV</u> (at least)⁵⁰ 	Comparable to estimates from <u>SECR</u> ^{[17-20]51}		
Density; Unmarked	Distance sampling (DS) ^{52,53}	 Random or systematic random placements (consistent with the assumption that points are placed independently of animal locations)⁵² <u>Camera locations</u> are randomly placed relative to animal movement⁵⁴ Detection is perfect (detection probability "p" = 1) at focal area / distance 0⁵⁴ Demographic closure (i.e., no births or deaths) and geographic closure (i.e., no immigration or emigration) (animal density is constant during the survey)⁵⁴ Animal movement and behaviour are unaffected by the cameras⁵⁴ Animals are detected at initial locations (e.g., they do not change course in response to the camera prior to detection)⁵⁴ Distances are measured exactly (however if the data from different distances will be grouped ("binned") for analysis later, an accuracy of +/-1m may suffice)⁵⁴ Snapshot moments selected independent⁵⁴ 	 A shortcut to controlling for variation in detection distances by only counting individuals within a short distance with an unobstructed view, and well sampled across cameras and species¹ Density estimates are unbiased by animal movement "since camera-animal distance is measured at a certain instant in time (intervals of duration <i>t</i> apart)"^{12,52} Can be applied to low-density populations^{12,52} Does not require individual identification⁵² 	 May require discarding a portion of the dataset (when the best fitting model truncates the dataset)¹ Biased by movement speed⁵⁴ Best suited to larger animals; the smaller the focal species, the lower remote cameras must be set, which reduces the depth of the viewshed, and thus sampling size and the flexibility of the model"^{12,52} Does not permit inference about spatial variation in abundance (unless using hierarchical distance which can model spatial variation as a function of covariates)^{12,55} "Calculating camera-animal distances can be labour-intensive and time-consuming (However, recently developed techniques (e.g., Johanns et al., 2022) show promise for simplifying and automating the process)"¹² Requires a good understanding of the focal populations' activity patterns; density estimates can be biased (e.g., underestimated) when regular periods of inactivity are not accounted for (using detection times to infer periods of activity may help overcome this limitation)"^{12,52,54} 	

<u>Objective</u>	Approach	Assumptions	Pros	Cons	References
				 Low population density and reactivity to cameras may be major sources of bias^{"12,57} 	
Density; Unmarked	<u>Time-to-</u> event (TTE) model ¹⁵	 Demographic closure (i.e., no births or deaths)^{15,58} Geographic closure (i.e., no immigration or emigration) at the level of the sampling frame (area of interest); this assumption does not apply at the plot-level (area sampled by the camera)^{15,58} Animal movement and behaviour are unaffected by the cameras⁵⁴ <u>Camera locations</u> placement is random, systematic, or systematic random¹⁵ Detections are independent¹⁵ Spatial counts of animals (or counts in equal subsets of the landscape) are Poisson-distributed⁵⁸ Accurate estimate of movement speed⁵⁸ Detection is perfect (detection probability "p" = 1)¹⁵ 	• Can be efficient for estimating abundance of common species (with a lot of images) ¹⁵	 Requires independent estimates of movement rate (difficult to obtain without telemetry data)¹⁵ Assumes that <u>detection</u> <u>probability</u> is 1 (or apply extension to account for <u>imperfect detection</u>)¹⁵ 	
<u>Density;</u> <u>Unmarked</u>	Space-to- event (STE) models ¹⁵	 Demographic closure (i.e., no births or deaths)¹⁵ Geographic closure (i.e., no immigration or emigration)¹⁵ <u>Camera locations</u> are <u>randomly placed¹⁵</u> Detections are <u>independent¹⁵</u> Spatial counts of animals in a small area (or counts in equal subsets of the landscape) are Poisson-distributed⁵⁸ 	 Can be efficient for estimating abundance of common species (with a lot of images)¹⁵ Does not require estimate of movement rate¹⁵ 	• Assumes that <u>detection</u> <u>probability</u> is 1 ¹⁵	

<u>Objective</u>	<u>Approach</u>	Assumptions	Pros	Cons	References
		 Detection is perfect (<u>detection</u> <u>probability</u> "p" = 1)¹⁵ 			
<u>Density;</u> <u>Unmarked</u>	Instantaneou s sampling (IS) ¹⁵	 Demographic closure (i.e., no births or deaths)¹⁵ Geographic closure (i.e., no immigration or emigration)¹⁵ <u>Camera locations</u> are <u>randomly placed¹⁵</u> Detections are <u>independent¹⁵</u> Detection is perfect (<u>detection probability</u> "p" = 1)¹⁵ 	 Can be efficient for estimating abundance of common species (with a lot of images)¹⁵ Flexible <u>assumption</u> of animals' distribution¹⁵ 	 Requires accurate counts of animals¹⁵ Assumes that perfect (<u>detection probability</u> "<i>p</i>" = 1)¹⁵ Reduced precision¹⁵ 	
Behaviour (diel activity mating, bold	-	 <u>Assumptions</u> vary depending on the behavioural metric¹ For studies of activity patterns and temporal interactions of species: activity level is the only factor determining <u>detection rates</u>; animals are active when camera <u>detection rate</u> reaches its maximum in daily cycle^{33,60} 	 Can detect difficult to observe behaviours (i.e., boldness, or mating)⁵⁹ Long-term data on behavioural changes that would be difficult to obtain otherwise (i.e., time-limited human observers, or costly GPS collars)⁵⁹ Can monitor behaviour in response to specific locations (i.e., compost sites, which might be more difficult using GPS collars for example)⁶⁰ Can evaluate interactions between species⁶⁰ 	 Behavioural metrics may not reflect the behavioural state (inferred)⁶⁰ Biases associated with equipment (i.e., presence of the camera itself may change behaviour studied)⁶⁰ Difficult to consider individual variation⁶⁰ 	