master test#

Hint

Spatial capture-recapture (SCR) / Spatially explicit capture recapture (SECR): The SECR (or SCR) method is used to estimate the density of marked populations; an extension of traditional capture-recapture (CR; Karanth, 1995; Karanth & Nichols, 1998) models (Karanth, 1995; Karanth & Nichols, 1998) that explicitly accounts for camera location and animal movement (Burgar et al., 2018). SECR models use spatially referenced individual capture histories to infer where animals’ home range centres are, assuming that detection probability decreases with increasing distance between cameras and home range centres (Clarke et al., 2023). SECR models can be implemented using different statistical frameworks, including Bayesian estimation (Royle and Young, 2008; Morin et al., 2022).

replace me with text

Ahumada et al., 2011

Assumptions, Pros, Cons
Assumptions
Pros
Cons

This section will be available soon! In the meantime, check out the information in the other tabs!

../_images/00_coming_soon.png

This section will be available soon! In the meantime, check out the information in the other tabs!

../_images/00_coming_soon.png
rtxt_figure1_ref_id

../_images/figure1_filename.png

figure1_caption

rtxt_figure2_ref_id

../_images/figure2_filename.png

figure2_caption

rtxt_figure3_ref_id

../_images/figure3_filename.png

figure3_caption

rtxt_figure4_ref_id

../_images/figure4_filename.png

figure4_caption

rtxt_figure5_ref_id

../_images/figure5_filename.png

figure5_caption

rtxt_figure6_ref_id

../_images/figure6_filename.png

figure6_caption

rtxt_vid1_ref_id

vid1_caption

rtxt_vid2_ref_id

vid2_caption

rtxt_vid3_ref_id

vid3_caption

rtxt_vid4_ref_id

vid4_caption

rtxt_vid5_ref_id

vid5_caption

rtxt_vid6_ref_id

vid6_caption

shiny_name

shiny_caption

shiny_name2

shiny_caption2

Type

Name

Note

URL

Reference

rJAGS/R code

mfidino/multi-state-occupancy-models

mfidino/multi-state-occupancy-models

Fidino, M. (2021a) multi-state-occupancy-models. https://github.com/mfidino/integrated-occupancy-model

JAGS/R code

A gentle introduction to an integrated occupancy model that combines presence-only and detection/non-detection data, and how to fit it in JAGS;
integrated-occupancy-model”

https://masonfidino.com/bayesian_integrated_model/;
mfidino/integrated-occupancy-model

Fidino, M. (2021b) A gentle introduction to an integrated occupancy model that combines presence-only and detection/non-detection data, and how to fit it in JAGS https://masonfidino.com/bayesian_integrated_model
;
Fidino, M. (2021c) integrated-occupancy-models https://github.com/mfidino/integrated-occupancy-model

JAGS code/Tutorial

So, you don’t have enough data to fit a dynamic occupancy model? An introduction to auto-logistic occupancy models;
auto-logistic-occupancy

https://masonfidino.com/autologistic_occupancy_model/;
mfidino/auto-logistic-occupancy

Fidino, M. (2021d) So, you don’t have enough data to fit a dynamic occupancy model? An introduction to auto-logistic occupancy models. https://masonfidino.com/autologistic_occupancy_model
;
Fidino, M. (2021e) auto-logistic-occupancy. https://github.com/mfidino/auto-logistic-occupancy

R package

Package “autoOcc”

An R package for fitting autologistic occupancy models

mfidino/autoOcc

Fidino, M. (2023) autoOcc: An R package for fitting autologistic occupancy models. R package version 0.1.1, https://github.com/mfidino/autoOcc

R code

mfidino/periodicity

Using Fourier series to predict periodic patterns in dynamic occupancy models

mfidino/periodicity

Fidino, M., & Magle, S. B. (2017). Using Fourier series to predict periodic patterns in dynamic occupancy models. Ecosphere,8(9) , e01944. https://doi.org/10.1002/ecs2.1944

Spreadsheet

OccPower.xlsx

Spreadsheet to compute power to detect difference in 2 independent occupancy estimates using asymptotic approximations described in Guillera-Arroita et. al. (2012).

Download the XLS

Guillera-Arroita, G., & Lahoz-Monfort, J. J. (2012). Designing studies to detect differences in species occupancy: Power analysis under imperfect detection. Methods in Ecology and Evolution, 3(5), 860-869. https://doi.org/10.1111/j.2041-210X.2012.00225.x

R code/Tutorial

“An Introduction to Camera Trap Data Management and Analysis in R > Chapter 11 Occupancy”

https://bookdown.org/c_w_beirne/wildCo-Data-Analysis/occupancy.html

Program

Program “PRESENCE”

“Relatively simple, but comprehensive, software dedicated to occupancy estimation. Linux version available. Can also be used for occupancy-based species richness estimation.” (Wearn & Glover-Kapfer, 2017)

Software: <www.mbr-pwrc.usgs.gov/software/presence.html>;
Help forum: <www.phidot.org>

Hines, J. E. (2006). PRESENCE - Software to estimate patch occupancy and related parameters. https://www.mbr-pwrc.usgs.gov/software/presence.html.

R package

Package “RPresence”

“The R counterpart to Presence. Cross-platform (Windows, Mac and Linux).” (Wearn & Glover-Kapfer, 2017)

https://www.mbr-pwrc.usgs.gov/software/presence.shtml

Hines, J. E. (2006). PRESENCE - Software to estimate patch occupancy and related parameters. https://www.mbr-pwrc.usgs.gov/software/presence.html.

R package

R package “unmarked”

“Implements a wide variety of occupancy and count-based abundance models (the latter are mostly not appropriate for camera-trapping). Actively being developed and supported by a community of users. Cross-platform (Windows, Mac and Linux).” (Wearn & Glover-Kapfer, 2017)

https://cran.r-project.org/web/packages/unmarked/index.html;
https://groups.google.com/d/forum/unmarked,;
https://hmecology.github.io/unmarked>

Fiske, I. & Chandler, R. (2011). unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance. Journal of Statistical Software, 43(10), 1-23. https://www.jstatsoft.org/v43/i10
;

Kellner, K. F., Smith, A. D., Royle, J. A., Kery, M, Belant, J. L., & Chandler, R. B. (2023). The unmarked R package: Twelve years of advances in occurrence and abundance modelling in ecology. Methods in Ecology and Evolution, 14 (6), 1408-1415. https://www.jstatsoft.org/v43/i10/

R code/Tutorial

Multi-season Occupancy Models

https://darinjmcneil.weebly.com/multi-season-occupancy.html

McNeil, D. (n.d.). Multi-season Occupancy Models. https://darinjmcneil.weebly.com/multi-season-occupancy.html

R package

Package “detect”

R package for analyzing wildlife data with detection error

psolymos/detect

Solymos, P. (2023). Package ‘detect’: Analyzing Wildlife Data with Detection Error. R package version 0.4-6. https://cran.r-project.org/web/packages/detect/detect.pdf

R code/Tutorial

Occupancy Modeling

Easy to follow explanation of occupancy models with accompanying tutorial and R code.

https://kevintshoemaker.github.io/NRES-746/Occupancy.html

Tutorial

occupancyTuts: Occupancy modelling tutorials with RPresence

Occupancy modelling tutorials with RPresence

https://doi.org/10.1111/2041-210X.14285

Donovan, T., Hines, J., & MacKenzie, D. (2024). OCCUPANCYTUTS: Occupancy modelling tutorials with RPRESENCE. Methods in Ecology and Evolution, 15(3), 477-483. https://doi.org/10.1111/2041-210X.14285

R code/Tutorial

Implicit dynamics occupancy models in R

Implicit dynamics occupancy models with the R package RPresence. These models estimate occupancy probability when it changes through time without estimating colonization and extinction parameters.
The code and sample data from this tutorial are available on GitHub; jamesepaterson/occupancyworkshop.

https://jamesepaterson.github.io/jamespatersonblog/2024-06-02_implicitdynamicsoccupancy.html

Paterson, J. (2024). Implicit dynamics occupancy models in R. https://jamesepaterson.github.io/jamespatersonblog/2024-06-02_implicitdynamicsoccupancy.html

Tutorial

Using the mgcvmgcv package to create a generalized additive occupancy model in R

https://masonfidino.com/generalized_additive_occupancy_model

Fidino, M. (2021F) Using the mgcvmgcv package to create a generalized additive occupancy model in R. https://masonfidino.com/generalized_additive_occupancy_model

R Shiny app

Bias in single-season occupancy models

“Compute the relative bias (in %) in the maximum-likelihood estimator of the occupancy probability ψ in a single-season (aka static) occupancy model with constant parameters fitted with the package ‘unmarked’.”

Repo: oliviergimenez/bias_occupancy_flexdashboard
App: https://ecologicalstatistics.shinyapps.io/bias_occupancy

Gimenez, O. (2020a). Bias in single-season occupancy models. https://ecologicalstatistics.shinyapps.io/bias_occupancy;

R code

Bias in occupancy estimate for a static model

“R code to calculate bias in occupancy estimate as a function of the detection probability given various levels of occupancy probability, various number of sites and surveys.”

oliviergimenez/bias_occupancy

Gimenez, O. (2020b). Bias in occupancy estimate for a static model. https://github.com/oliviergimenez/bias_occupancy

R code/ Presentation

Species Distribution Modelling

‘Vernon Visser provided a brief introduction to SDMs. Below you can replace the lecture slides and R script from this seminar. Provided in these materials is:
- A step-by-step guide to running your own SDM
- Suggestions for best practices
- References that can help provide more detail on the methods
-An R script that is annotated to make its understanding and adaptability easier’

https://science.uct.ac.za/seec/stats-toolbox-seminars-spatial-and-species-distribution-toolboxes/species-distribution-modelling

Type

Name

Note

URL

Reference

rJAGS/R code

mfidino/multi-state-occupancy-models

mfidino/multi-state-occupancy-models

Fidino, M. (2021a) multi-state-occupancy-models. https://github.com/mfidino/integrated-occupancy-model

JAGS/R code

A gentle introduction to an integrated occupancy model that combines presence-only and detection/non-detection data, and how to fit it in JAGS;
integrated-occupancy-model”

https://masonfidino.com/bayesian_integrated_model/;
mfidino/integrated-occupancy-model

Fidino, M. (2021b) A gentle introduction to an integrated occupancy model that combines presence-only and detection/non-detection data, and how to fit it in JAGS https://masonfidino.com/bayesian_integrated_model
;

Fidino, M. (2021c) integrated-occupancy-models https://github.com/mfidino/integrated-occupancy-model

R package

Package “autoOcc”

An R package for fitting autologistic occupancy models

mfidino/autoOcc

Fidino, M. (2023) autoOcc: An R package for fitting autologistic occupancy models. R package version 0.1.1, https://github.com/mfidino/autoOcc

R code

mfidino/periodicity

Using Fourier series to predict periodic patterns in dynamic occupancy models

mfidino/periodicity

Fidino, M., & Magle, S. B. (2017). Using Fourier series to predict periodic patterns in dynamic occupancy models. Ecosphere,8(9) , e01944. https://doi.org/10.1002/ecs2.1944

Spreadsheet

OccPower.xlsx

Spreadsheet to compute power to detect difference in 2 independent occupancy estimates using asymptotic approximations described in Guillera-Arroita et. al. (2012).

Download the XLS

Guillera-Arroita, G., & Lahoz-Monfort, J. J. (2012). Designing studies to detect differences in species occupancy: Power analysis under imperfect detection. Methods in Ecology and Evolution, 3(5), 860-869. https://doi.org/10.1111/j.2041-210X.2012.00225.x

R code/Tutorial

“An Introduction to Camera Trap Data Management and Analysis in R > Chapter 11 Occupancy”

https://bookdown.org/c_w_beirne/wildCo-Data-Analysis/occupancy.html

Program

Program “PRESENCE”

“Relatively simple, but comprehensive, software dedicated to occupancy estimation. Linux version available. Can also be used for occupancy-based species richness estimation.” (Wearn & Glover-Kapfer, 2017)

Software: <www.mbr-pwrc.usgs.gov/software/presence.html>;
Help forum: <www.phidot.org>

Hines, J. E. (2006). PRESENCE - Software to estimate patch occupancy and related parameters. https://www.mbr-pwrc.usgs.gov/software/presence.html.

R package

Package “RPresence”

“The R counterpart to Presence. Cross-platform (Windows, Mac and Linux).” (Wearn & Glover-Kapfer, 2017)

https://www.mbr-pwrc.usgs.gov/software/presence.shtml

Hines, J. E. (2006). PRESENCE - Software to estimate patch occupancy and related parameters. https://www.mbr-pwrc.usgs.gov/software/presence.html.

R package

R package “unmarked”

“Implements a wide variety of occupancy and count-based abundance models (the latter are mostly not appropriate for camera-trapping). Actively being developed and supported by a community of users. Cross-platform (Windows, Mac and Linux).” (Wearn & Glover-Kapfer, 2017)

https://cran.r-project.org/web/packages/unmarked/index.html;
https://groups.google.com/d/forum/unmarked,;
https://hmecology.github.io/unmarked>

Fiske, I. & Chandler, R. (2011). unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance. Journal of Statistical Software, 43(10), 1-23. https://www.jstatsoft.org/v43/i10
;

Kellner, K. F., Smith, A. D., Royle, J. A., Kery, M, Belant, J. L., & Chandler, R. B. (2023). The unmarked R package: Twelve years of advances in occurrence and abundance modelling in ecology. Methods in Ecology and Evolution, 14 (6), 1408-1415. https://www.jstatsoft.org/v43/i10/

R code/Tutorial

Multi-season Occupancy Models

https://darinjmcneil.weebly.com/multi-season-occupancy.html

McNeil, D. (n.d.). Multi-season Occupancy Models. https://darinjmcneil.weebly.com/multi-season-occupancy.html

R package

Package “detect”

R package for analyzing wildlife data with detection error

psolymos/detect

Solymos, P. (2023). Package ‘detect’: Analyzing Wildlife Data with Detection Error. R package version 0.4-6. https://cran.r-project.org/web/packages/detect/detect.pdf

R code/Tutorial

Occupancy Modeling

Easy to follow explanation of occupancy models with accompanying tutorial and R code.

https://kevintshoemaker.github.io/NRES-746/Occupancy.html

Tutorial

occupancyTuts: Occupancy modelling tutorials with RPresence

Occupancy modelling tutorials with RPresence

https://doi.org/10.1111/2041-210X.14285

Donovan, T., Hines, J., & MacKenzie, D. (2024). OCCUPANCYTUTS: Occupancy modelling tutorials with RPRESENCE. Methods in Ecology and Evolution, 15(3), 477-483. https://doi.org/10.1111/2041-210X.14285

R code/Tutorial

Implicit dynamics occupancy models in R

Implicit dynamics occupancy models with the R package RPresence. These models estimate occupancy probability when it changes through time without estimating colonization and extinction parameters.
The code and sample data from this tutorial are available on GitHub; jamesepaterson/occupancyworkshop.

https://jamesepaterson.github.io/jamespatersonblog/2024-06-02_implicitdynamicsoccupancy.html

Paterson, J. (2024). Implicit dynamics occupancy models in R. https://jamesepaterson.github.io/jamespatersonblog/2024-06-02_implicitdynamicsoccupancy.html

Tutorial

Using the mgcvmgcv package to create a generalized additive occupancy model in R

https://masonfidino.com/generalized_additive_occupancy_model

Fidino, M. (2021F) Using the mgcvmgcv package to create a generalized additive occupancy model in R. https://masonfidino.com/generalized_additive_occupancy_model

R Shiny app

Bias in single-season occupancy models

“Compute the relative bias (in %) in the maximum-likelihood estimator of the occupancy probability ψ in a single-season (aka static) occupancy model with constant parameters fitted with the package ‘unmarked’.”

Repo: oliviergimenez/bias_occupancy_flexdashboard
App: https://ecologicalstatistics.shinyapps.io/bias_occupancy

Gimenez, O. (2020a). Bias in single-season occupancy models. https://ecologicalstatistics.shinyapps.io/bias_occupancy;

R code

Bias in occupancy estimate for a static model

“R code to calculate bias in occupancy estimate as a function of the detection probability given various levels of occupancy probability, various number of sites and surveys.”

oliviergimenez/bias_occupancy

Gimenez, O. (2020b). Bias in occupancy estimate for a static model. https://github.com/oliviergimenez/bias_occupancy

R code/ Presentation

Species Distribution Modelling

‘Vernon Visser provided a brief introduction to SDMs. Below you can replace the lecture slides and R script from this seminar. Provided in these materials is:
- A step-by-step guide to running your own SDM
- Suggestions for best practices
- References that can help provide more detail on the methods
-An R script that is annotated to make its understanding and adaptability easier’

https://science.uct.ac.za/seec/stats-toolbox-seminars-spatial-and-species-distribution-toolboxes/species-distribution-modelling

Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., Bayne, E., Boutin, S., & Stephens, P. (2015). Camera trap Trapping: A Review and Recommendations for Linking Surveys to Ecological Processes. Journal of Applied Ecology, 52(3), 675-685. https://doi.org/10.1111/1365-2664.12432
Byrne, M. & Golden, J. (2021). Occupancy Modeling. https://kevintshoemaker.github.io/NRES-746/Occupancy.html
Chatterjee, N., Schuttler, T. G., Nigam, P., & Habib, B. (2021). Deciphering the rarity-detectability continuum: optimizing Survey design for terrestrial mammalian community. Ecosphere 12(9), e03748. https://doi.org/10.1002/ecs2.3748
Clarke, J., Bohm, H., Burton, C., Constantinou, A. (2023). Using Camera Traps to Estimate Medium and Large Mammal Density: Comparison of Methods and Recommendations for Wildlife Managers. https://doi.org/10.13140/RG.2.2.18364.72320
Cove, M. (2020a, Sep 27). Occupancy Modeling Video 1 -- Sampling Techniques for Mammals. [Video]. YouTube. https://www.youtube.com/watch?v=n21Ugw0lYcY
Cove, M. (2020b, Sep 27). Occupancy Modeling Video 2 -- Introductory Statistical Review. [Video]. YouTube. https://www.youtube.com/watch?v=u--F8_oRpVU&t=1s
Cove, M. (2020c, Sep 27). Occupancy Modeling Video 3 -- What are Occupancy Models and What are the Applications? [Video]. YouTube. https://www.youtube.com/watch?v=-F-txltI_iA
Cove, M. (2020d, Sep 28). Occupancy Modeling Video 4 -- How to Run and Interpret the Models in PRESENCE [Video]. YouTube. https://www.youtube.com/watch?v=DVo4KVMPnWg
Donovan, T., Hines, J., & MacKenzie, D. (2024). OCCUPANCYTUTS: Occupancy modelling tutorials with RPRESENCE. Methods in Ecology and Evolution, 15(3), 477-483. https://doi.org/10.1111/2041-210X.14285
Efford, M. G., & Dawson, D. K. (2012). Occupancy in continuous habitat. Ecosphere, 3(4). Article 32. https://doi.org/10.1890/es11-00308.1
Fidino, M. (2021d) So, you don't have enough data to fit a dynamic occupancy model? An introduction to auto-logistic occupancy models. https://masonfidino.com/autologistic_occupancy_model
Fidino, M. (2021a) multi-state-occupancy-models. https://github.com/mfidino/integrated-occupancy-model
Fidino, M. (2021b) A gentle introduction to an integrated occupancy model that combines presence-only and detection/non-detection data, and how to fit it in JAGS https://masonfidino.com/bayesian_integrated_model
Fidino, M. (2021c) integrated-occupancy-models https://github.com/mfidino/integrated-occupancy-model
Fidino, M. (2021e) auto-logistic-occupancy. https://github.com/mfidino/auto-logistic-occupancy
Fidino, M. (2021F) Using the mgcvmgcv package to create a generalized additive occupancy model in R. https://masonfidino.com/generalized_additive_occupancy_model
Fidino, M. (2023) autoOcc: An R package for fitting autologistic occupancy models. R package version 0.1.1, https://github.com/mfidino/autoOcc
Fidino, M., & Magle, S. B. (2017). Using Fourier series to predict periodic patterns in dynamic occupancy models. Ecosphere,8(9) , e01944. https://doi.org/10.1002/ecs2.1944
Kellner, K. F., Smith, A. D., Royle, J. A., Kery, M, Belant, J. L., & Chandler, R. B. (2023). The unmarked R package: Twelve years of advances in occurrence and abundance modelling in ecology. Methods in Ecology and Evolution, 14 (6), 1408-1415. https://www.jstatsoft.org/v43/i10/
Gaston, K. J., Blackburn, T. M., Greenwood, J. J. D., Gregory, R. D., Quinn, R. M., & Lawton, J. H. (2000). Abundance-Occupancy Relationships. The Journal of Applied Ecology, 37(s1), 39-59. https://doi.org/10.1046/j.1365-2664.2000.00485.x
Gimenez, O. (2020a). Bias in single-season occupancy models. https://ecologicalstatistics.shinyapps.io/bias_occupancy;
Gimenez, O. (2020b). Bias in occupancy estimate for a static model. https://github.com/oliviergimenez/bias_occupancy
Gimenez, O. (2023, May 16). Workshop on estimating (wolf) occupancy with R [Video]. YouTube. https://www.youtube.com/watch?v=rpjVrFI_dr8
Guillera‐Arroita, G. (2017). Modelling of species distributions, range dynamics and communities under imperfect detection: Advances, challenges and opportunities. Ecography, 40(2), 281-295. https://doi.org/10.1111/ecog.02445
Hines, J. E. (2006). PRESENCE - Software to estimate patch occupancy and related parameters. https://www.mbr-pwrc.usgs.gov/software/presence.html.
Fiske, I. & Chandler, R. (2011). unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance. Journal of Statistical Software, 43(10), 1-23. https://www.jstatsoft.org/v43/i10
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. (2017). Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. 2nd ed. Academic Press, San Diego. https://www.sciencedirect.com/book/9780124071971/occupancy-estimation-and-modeling.
McNeil, D. (n.d.). Multi-season Occupancy Models. https://darinjmcneil.weebly.com/multi-season-occupancy.html
Murray, M. H., Fidino, M., Lehrer, E. W., Simonis, J. L., & Magle, S. B. (2021). A multi-state occupancy model to non-invasively monitor visible signs of wildlife health with camera traps that accounts for image quality. Journal of Animal Ecology, 90(8), 1973-1984. https://doi.org/10.1111/1365-2656.13515
Neilson, E. W., Avgar, T., Burton, A. C., Broadley, K., & Boutin, S. (2018). Animal movement affects interpretation of occupancy models from camera‐trap Surveys of unmarked animals. Ecosphere, 9(1). https://doi.org/10.1002/ecs2.2092
Noon, B. R., Bailey, L. L., Sisk, T. D., & McKelvey, K. S. (2012). Efficient Species-Level Monitoring at the Landscape Scale. Conservation Biology, 26(3), 432-41. https://doi.org/10.1111/j.1523-1739.2012.01855.x.
Paterson, J. (2024). Implicit dynamics occupancy models in R. https://jamesepaterson.github.io/jamespatersonblog/2024-06-02_implicitdynamicsoccupancy.html
Proteus (2018, Mar 19). Occupancy modelling - more than species presence/absence! [Video]. YouTube. https://www.youtube.com/watch?v=Sp4kb4_TiBA&t=2s
Proteus. (2019a, May 30). Occupancy modelling - the difference between probability and proportion of units occupied [Video]. YouTube. https://www.youtube.com/watch?v=zKQFY8W4ceU
Proteus. (2019b, Aug 22). Occupancy models - how many covariates can I include? [Video]. YouTube. https://www.youtube.com/watch?v=tCh7rTu6fvQ
Proteus (N.D.). Occupancy modelling - more than species presence/absence! [Webpage]. https://www.proteus.co.nz/news-tips-and-tricks/occupancy-modelling-more-than-species-presenceabsence
Royle, J. A., & Dorazio, R. M. (2008). Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities. 1st ed. Academic Press, Amsterdam; Boston. https://doi.org/10.1016/B978-0-12-374097-7.50001-5
Sollmann, R. (2018). A gentle introduction to camera‐trap data analysis. African Journal of Ecology, 56, 740-749. https://doi.org/10.1111/aje.12557
Solymos, P. (2023). Package ‘detect': Analyzing Wildlife Data with Detection Error. R package version 0.4-6. https://cran.r-project.org/web/packages/detect/detect.pdf
Southwell, D. M., Einoder, L. D., Lahoz‐Monfort, J. J., Fisher, A., Gillespie, G. R., & Wintle, B. A. (2019). Spatially explicit power analysis for detecting occupancy trends for multiple species. Ecological Applications, 29, e01950. https://doi.org/10.1002/eap.1950
Steenweg, R., Hebblewhite, M., Whittington, J., Lukacs, P., & McKelvey, K. (2018). Sampling scales define occupancy and underlying occupancy-abundance relationships in animals. Ecology, 99(1), 172-183. https://doi.org/10.1002/ecy.2054
Stewart, F. E. C., Fisher, J. T., Burton, A. C., & Volpe, J. P. (2018). Species occurrence data reflect the magnitude of animal movements better than the proximity of animal space use. Ecosphere, 9(2), e02112. https://doi.org/10.1002/ecs2.2112
weecology (2020, Oct 30). Introduction to Species Distribution Modeling Using R. [Video]. YouTube. https://www.youtube.com/watch?v=0VObf2rMrI8