Literature & Resources

Literature & Resources#

Subject

Reference

Download

Aerial Infrared Imaging

Hennig, J. D., Schoenecker, K. A., Terwilliger, M. L. N., Holm, G. W., & Laake, J. L. (2021). Comparison of Aerial Thermal Infrared Imagery and Helicopter Surveys of Bison (Bison bison) in Grand Canyon National Park, USA. Sensors, 21(15), 5087. https://doi.org/10.3390/s21155087

Download

Bias and Error & Detection Probability

Davis, K. L., Silverman, E. D., Sussman, A. L., Wilson, R. R., & Zipkin, E. F. (2022). Errors in aerial survey count data: Identifying pitfalls and solutions. Ecology and Evolution, 12(3), e8733. https://doi.org/10.1002/ece3.8733

Download

Bias and Error & Detection Probability

Elphick, C. S. (2008). How you count counts: The importance of methods research in applied ecology. Journal of Applied Ecology, 45(5), 1313–1320. https://doi.org/10.1111/j.1365-2664.2008.01545.x

Download

Bias and Error & Detection Probability

Zabransky, C. J., Hewitt, D. G., Deyoung, R. W., Gray, S. S., Richardson, C., Litt, A. R., & Deyoung, C. A. (2016). A detection probability model for aerial surveys of mule deer: Mule Deer Detection Probability Model. The Journal of Wildlife Management, 80(8), 1379–1389. https://doi.org/10.1002/jwmg.21143

Download

Bias and Error & Detection Probability

Lubow, B. C., & Ransom, J. I. (2016). Practical Bias Correction in Aerial Surveys of Large Mammals: Validation of Hybrid Double-Observer with Sightability Method against Known Abundance of Feral Horse (Equus caballus) Populations. PLOS ONE, 11(5), e0154902. https://doi.org/10.1371/journal.pone.0154902

Download

Bias and Error & Detection Probability

Mason, R., Carpenter, L. H., Cox, M., Devos, J. C., Fairchild, J., Freddy, D. J., Heffelfinger, J. R., Kahn, R. H., Mccorquodale, S. M., Pac, D. F., Summers, D., White, G. C., & Williams, B. K. (2006). A Case for Standardized Ungulate Surveys and Data Management in the Western United States. Wildlife Society Bulletin, 34(4), 1238–1242. https://doi.org/10.2193/0091-7648(2006)34[1238:ACFSUS]2.0.CO;2{.uri}

Download

Bias and Error & Detection Probability

Delisle, Z. J., McGovern, P. G., Dillman, B. G., & Swihart, R. K. (2023). Imperfect detection and wildlife density estimation using aerial surveys with infrared and visible sensors. Remote Sensing in Ecology and Conservation, 9(2), 222–234. https://doi.org/10.1002/rse2.305

Download

Citizen Science

Belt, J. J., & Krausman, P. R. (2012). Evaluating population estimates of mountain goats based on citizen science. Wildlife Society Bulletin, 36(2), 264–276. https://doi.org/10.1002/wsb.139

Download

Drones

Coops, N. C., Goodbody, T. R. H., & Cao, L. (2019). Four steps to extend drone use in research. Nature, 572(7770), 433–435. https://doi.org/10.1038/d41586-019-02474-y

Download

Drones

Corcoran, E., Winsen, M., Sudholz, A., & Hamilton, G. (2021). Automated detection of wildlife using drones: Synthesis, opportunities and constraints. Methods in Ecology and Evolution, 12(6), 1103–1114. https://doi.org/10.1111/2041-210X.13581

Download

Drones

Cowie, N., Swinfield, T., Humpidge, R., Williams, J., Bridge, D., Casey, C., Asque, A., & Morris, D. (2020). Drones for GIS – Best Practice. Royal Society for the Protection of Birds Conservation Data Management Unit. https://wildlabs.net/sites/default/files/community/files/drones_for_gis_-_best_practice_v2.0.pdf

Download

Drones

López, J., & Mulero-Pázmány, M. (2019). Drones for Conservation in Protected Areas: Present and Future. Drones, 3(1), 10. https://doi.org/10.3390/drones3010010

Download

Drones

McMahon, M. C., Ditmer, M. A., Isaac, E. J., Moore, S. A., & Forester, J. D. (2021). Evaluating Unmanned Aerial Systems for the Detection and Monitoring of Moose in Northeastern Minnesota. Wildlife Society Bulletin, 45(2), 312–324. https://doi.org/10.1002/wsb.1167

Download

Drones

Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6(6), 147. https://doi.org/10.3390/drones6060147

Download

Harvest Indices

Priadka, P., Brown, G. S., Patterson, B. R., & Mallory, F. F. (2020). Sex and age‐specific differences in the performance of harvest indices as proxies of population abundance under selective harvesting. Wildlife Biology, 2020(3), 1–11. https://doi.org/10.2981/wlb.00629

Download

DNA

Van Leeuwen, P., & Michaux, J. (2023). Using eDNA for mammal inventories still needs naturalist expertise, a meta‐analysis. Ecology and Evolution, 13(12), e10788. https://doi.org/10.1002/ece3.10788

Download

Integrated Population Models

Furnas, B. J., Landers, R. H., Hill, S., Itoga, S. S., & Sacks, B. N. (2018). Integrated modeling to estimate population size and composition of mule deer. The Journal of Wildlife Management, 82(7), 1429–1441. https://doi.org/10.1002/jwmg.21507

Download

Integrated Population Models

Moeller, A. K., Nowak, J. J., Neufeld, L., Bradley, M., Manseau, M., Wilson, P., McFarlane, S., Lukacs, P. M., & Hebblewhite, M. (2021). Integrating counts, telemetry, and non‐invasive DNA data to improve demographic monitoring of an endangered species. Ecosphere, 12(5), e03443. https://doi.org/10.1002/ecs2.3443

Download

Monitoring Frequency

Conroy, M. J., Harris, G., Stewart, D. R., & Butler, M. J. (2018). Evaluation of desert bighorn sheep abundance surveys, southwestern Arizona, USA. The Journal of Wildlife Management, 82(6), 1149–1160. https://doi.org/10.1002/jwmg.21463

Download

Monitoring Frequency

McDonald-Madden, E., Baxter, P. W. J., Fuller, R. A., Martin, T. G., Game, E. T., Montambault, J., & Possingham, H. P. (2010). Monitoring does not always count. Trends in Ecology & Evolution, 25(10), 547–550. https://doi.org/10.1016/j.tree.2010.07.002

Download

Monitoring Frequency

Priadka, P., Brown, G. S., Fedy, B. C., & Mallory, F. F. (2022). When can model‐based estimates replace surveys of wildlife populations that span many discrete management units? Ecological Solutions and Evidence, 3(2), e12149. https://doi.org/10.1002/2688-8319.12149

Download

Multiple Methods

Davis, A. J., Keiter, D. A., Kierepka, E. M., Slootmaker, C., Piaggio, A. J., Beasley, J. C., & Pepin, K. M. (2020). A comparison of cost and quality of three methods for estimating density for wild pig (Sus scrofa). Scientific Reports, 10(1), 2047. https://doi.org/10.1038/s41598-020-58937-0

Download

Multiple Methods

Graves, T. A., Yarnall, M. J., Johnston, A. N., Preston, T. M., Chong, G. W., Cole, E. K., Janousek, W. M., & Cross, P. C. (2022). Eyes on the herd: Quantifying ungulate density from satellite, unmanned aerial systems, and GPS collar data. Ecological Applications, 32(5), e2600. https://doi.org/10.1002/eap.2600

Download

Multiple Methods

Keegan, T. W., Ackerman, B. B., Aoude, A. N., Bender, L. C., Boudreau, T., Carpenter, L. H., Compton, B. B., Elmer, M., Heffelfinger, J. R., Lutz, D. W., Trindle, B. D., Wakeling, B. F., & Watkins, B. E. (2011). Methods For Monitoring Mule Deer Populations. Mule Deer Working Group, Western Association of Fish and Wildlife Agencies, USA. https://wafwa.org/wpdm-package/methods-for-monitoring-mule-deer-populations/

Download

Multiple Methods

Forsyth, D. M., Comte, S., Davis, N. E., Bengsen, A. J., Côté, S. D., Hewitt, D. G., Morellet, N., & Mysterud, A. (2022). Methodology matters when estimating deer abundance: A global systematic review and recommendations for improvements. The Journal of Wildlife Management, 86(4), e22207. https://doi.org/10.1002/jwmg.22207

Article
Suppl S1
Suppl S2
Suppl S3
Suppl S4
Suppl S5
Suppl S6
Suppl S7

Multiple Methods

National Boreal Caribou Knowledge Consortium [NBCKC]. (2019). Boreal Caribou Monitoring In Canada—Part I: Perspectives from the NBCKC Monitoring Working Group 2019. https://www.cclmportal.ca/resource/boreal-caribou-monitoring-canada-part-i-perspectives-nbckc-monitoring-working-group

Download

Multiple Methods

National Boreal Caribou Knowledge Consortium [NBCKC]. (2024). Knowing the Herd: A summary of Boreal Caribou Monitoring In Canada—Part I: Perspectives from the NBCKC Monitoring Working Group 2019. https://www.cclmportal.ca/resource/knowing-herd-summary-boreal-caribou-monitoring-canada-part-i-perspectives-nbckc-monitoring

Download

Multiple Methods

National Boreal Caribou Knowledge Consortium [NBCKC / CNSCB]. (2024). National Boreal Caribou Knowledge Consortium Glossary: Creating a common language. https://www.cclmportal.ca/resource/creating-common-language-glossary#:~:text=The goal of the National,A Toolkit for Respectful Collaboration

Download

Multiple Methods

Delisle, Z. J., McGovern, P. G., Dillman, B. G., Reeling, C. J., Caudell, J. N., & Swihart, R. K. (2023). Using cost‐effectiveness analysis to compare density‐estimation methods for large‐scale wildlife management. Wildlife Society Bulletin, 47(2), e1430. https://doi.org/10.1002/wsb.1430

Download

Multiple Methods

Koitzsch, K. B., Anton, C. B., Koitzsch, L. O., Tjepkes, T. L., Schumann, A. C., & Strasburg, J. L. (2022). A noninvasive and integrative approach for improving density and abundance estimates of moose. The Journal of Wildlife Management, 86(4), e22200. https://doi.org/10.1002/jwmg.22200

Download

Multiple Methods

Mayer, M., Furuhovde, E., Nordli, K., Myriam Ausilio, G., Wabakken, P., Eriksen, A., Evans, A. L., Mathisen, K. M., & Zimmermann, B. (2024). Monitoring GPS‐collared moose by ground versus drone approaches: Efficiency and disturbance effects. Wildlife Biology, e01213. https://doi.org/10.1002/wlb3.01213

Download

Multiple Methods

Moll, R. J., Poisson, M. K. P., Heit, D. R., Jones, H., & Kantar, L. (2022). A Review of Methods to Estimate and Monitor Moose Density and Abundance. ALCES VOL., 58. https://alcesjournal.org/index.php/alces/article/view/1881

Download

Multiple Methods

Found, R., & Patterson, B. R. (2020). Assessing Ungulate Populations in Temperate North America. Canadian Wildlife Biology and Management, 9(1). https://www.researchgate.net/publication/364337281_Assessing_ungulate_populations_in_temperate_North_America

Download

Remote Cameras

Becker, M., Huggard, D. J., Dickie, M., Warbington, C., Schieck, J., Herdman, E., Serrouya, R., & Boutin, S. (2022). Applying and testing a novel method to estimate animal density from motion‐triggered cameras. Ecosphere, 13(4), e4005. https://doi.org/10.1002/ecs2.4005

Download

Remote Cameras

Burgar, J. M., Stewart, F. E. C., Volpe, J. P., Fisher, J. T., & Burton, A. C. (2018). Estimating density for species conservation: Comparing camera trap spatial count models to genetic spatial capture-recapture models. Global Ecology and Conservation, 15, e00411. https://doi.org/10.1016/j.gecco.2018.e00411

Download

Remote Cameras

Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., Bayne, E., & Boutin, S. (2015). REVIEW: Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52(3), 675–685. https://doi.org/10.1111/1365-2664.12432

Download

Remote Cameras

Clarke, J., Bohm, H., Burton, C., & Constantinou, A. (2023). Using Camera Traps to Estimate Medium and Large Mammal Density: Comparison of Methods and Recommendations for Wildlife Managers. https://doi.org/10.13140/RG.2.2.18364.72320

Download

Remote Cameras

Clapham, M., Miller, E., Nguyen, M., & Darimont, C. T. (2020). Automated facial recognition for wildlife that lack unique markings: A deep learning approach for brown bears. Ecology and Evolution, 10(23), 12883–12892. https://doi.org/10.1002/ece3.6840

Download

Remote Cameras

Fennell, M., Beirne, C., & Burton, A. C. (2022). Use of object detection in camera trap image identification: Assessing a method to rapidly and accurately classify human and animal detections for research and application in recreation ecology. Global Ecology and Conservation, 35. https://doi.org/10.1016/j.gecco.2022.e02104

Download

Remote Cameras

Fuller, A. K., Augustine, B. C., Morin, D. J., Pigeon, K., Boulanger, J., Lee, D. C., Bisi, F., & Garshelis, D. L. (2022). The occupancy-abundance relationship and sampling designs using occupancy to monitor populations of Asian bears. Global Ecology and Conservation, 35, e02075. https://doi.org/10.1016/j.gecco.2022.e02075

Download

Remote Cameras

Goward, S. (2024). Using remote camera traps to monitor population demographics and community ecology of divii (Dall’s sheep): Part of a community-based monitoring program in the Northern Richardson Mountains, NT [University of Victoria]. https://dspace.library.uvic.ca/items/ff44ded3-8e82-4d5c-86ea-795c2fa75d65

Download

Remote Cameras

Howe, E. J., Buckland, S. T., Després‐Einspenner, M., & Kühl, H. S. (2017). Distance sampling with camera traps. Methods in Ecology and Evolution, 8(11), 1558–1565. https://doi.org/10.1111/2041-210X.12790

Download

Remote Cameras

Moeller, A. K., Lukacs, P. M., & Horne, J. S. (2018). Three novel methods to estimate abundance of unmarked animals using remote cameras. Ecosphere, 9(8), e02331. https://doi.org/10.1002/ecs2.2331

Download

Remote Cameras

Morin, D. J., Boulanger, J., Bischof, R., Lee, D. C., Ngoprasert, D., Fuller, A. K., McLellan, B., Steinmetz, R., Sharma, S., Garshelis, D., Gopalaswamy, A., Nawaz, M. A., & Karanth, U. (2022). Comparison of methods for estimating density and population trends for low-density Asian bears. Global Ecology and Conservation, 35. https://doi.org/10.1016/j.gecco.2022.e02058

Download

Remote Cameras

Sollmann, R. (2018). A gentle introduction to camera‐trap data analysis. African Journal of Ecology, 56(4), 740–749. https://doi.org/10.1111/aje.12557

Download

Remote Cameras

Wearn, O. R., & Glover-Kapfer, P. (2017). Camera-trapping for conservation: A guide to best-practices (Vol. 1). http://dx.doi.org/10.13140/RG.2.2.23409.17767

Download

Remote Cameras

Resources Information Standards Committee (RISC). (2019). Wildlife Camera Metadata Protocol; Standards for Components of British Columbia’s Biodiversity No. 44. https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nr-laws-policy/risc/wcmp_v1.pdf

Download

Remote Cameras

Alberta Remote Camera Steering Committee (RCSC). 2024. Remote Camera Metadata Standards: Standards for Alberta. Version 2.0. Edmonton, Alberta. https://ab-rcsc.github.io/RCSC-WildCAM_Remote-Camera-Survey-Guidelines-and-Metadata-Standards/2_metadata-standards/2_0.1_Citation-and-Info.html

Download

Remote Cameras

Alberta Remote Camera Steering Committee (RCSC), Stevenson, C., Hubbs, A., & Wildlife Cameras for Adaptive Management (WildCAM). (2024). Remote Camera Survey Guidelines: Guidelines for Western Canada. Edmonton, Alberta. https://ab-rcsc.github.io/RCSC-WildCAM_Remote-Camera-Survey-Guidelines-and-Metadata-Standards/1_survey-guidelines/1_0.1_Citation-and-Info.html

Download

Remote Cameras

WildCAM - “Software and Data Management Resources” (https://wildcams.ca/library/camera-trap-software-and-data-management/)

-

Remote Cameras

WildCAM - “A comparison of different camera data platforms

Download

Remote Cameras

Garland, L., Neilson, E., Avgar, T., Bayne, E., & Boutin. S. (2020) Random Encounter and Staying Time Model Testing with Human Volunteers. The Journal of Wildlife Management, 84(6), 1179–84. https://doi.org/10.1002/jwmg.21879.

Download

Remote Cameras

Oedekoven, C. S., Buckland, S. T., Mackenzie, M. L., King, R., Evans, K. O., & Burger, L. W. (2014). Bayesian Methods for Hierarchical Distance Sampling Models. Journal of Agricultural, Biological, and Environmental Statistics, 19(2), 219–39. https://doi.org/10.1007/s13253-014-0167-0.

Download

Remote Cameras

Kenney, A. J., S. Boutin, T. S. Jung, Murray. D. L., & N. Johnson. (2024). Motion-Sensitive Cameras Track Population Abundance Changes in a Boreal Mammal Community in Southwestern Yukon, Canada. Journal of Wildlife Management, 88(4), e22564. https://doi.org/10.1002/jwmg.22564.

Download

Remote Cameras

Coltrane, J., DeCesare, N. J., Horne, J. S., & Lukacs, P. M. (2024). Comparing camera-based ungulate density estimates: A case study using island populations of bighorn sheep and mule deer. The Journal of Wildlife Management, 88(7), e22636. https://doi.org/10.1002/jwmg.22636

Download

Remote Cameras

Schmidt, G. M., Graves, T. A., Pederson, J. C., & Carroll, S. L. (2022). Precision and bias of spatial capture–recapture estimates: A multi‐site, multi‐year Utah black bear case study. Ecological Applications, 32(5), e2618. https://doi.org/10.1002/eap.2618

Download

Remote Cameras

Delisle, Z. J., Miller, D. L., & Swihart, R. K. (2023). Modelling density surfaces of intraspecific classes using camera trap distance sampling. Methods in Ecology and Evolution, 14(5), 1287–1298. https://doi.org/10.1111/2041-210X.14093

Download

Telemetry

Epps, C. W., Holton, P. B., Monello, R. J., Crowhurst, R. S., Gaulke, S. M., Janousek, W. M., Creech, T. G. & Graves, T. A. (2024) Population and Spatial Dynamics of Desert Bighorn Sheep in Grand Canyon during an Outbreak of Respiratory Pneumonia. Frontiers in Ecology and Evolution, 12, 1-22. https://doi.org/10.3389/fevo.2024.1377214

Download

Survey Design

Efford, M. G., & Boulanger, J. (2019). Fast evaluation of study designs for spatially explicit capture–recapture. Methods in Ecology and Evolution, 10(9), 1529–1535. https://doi.org/10.1111/2041-210X.13239

Download

Survey Design

Reynolds, J. H., Thompson, W. L., & Russell, B. (2011). Planning for success: Identifying effective and efficient survey designs for monitoring. Ecoregional-Scale Monitoring within Conservation Areas, in a Rapidly Changing Climate, 144(5), 1278–1284. https://doi.org/10.1016/j.biocon.2010.12.002

Download

Collaboration

Merrill, E. H. (2015). Are management implications for the Journal ceremonial?: Editor’s Message. The Journal of Wildlife Management, 79(1), 1–2. https://doi.org/10.1002/jwmg.819

Download

Collaboration

Merkle, J. A., Anderson, N. J., Baxley, D. L., Chopp, M., Gigliotti, L. C., Gude, J. A., Harms, T. M., Johnson, H. E., Merrill, E. H., Mitchell, M. S., Mong, T. W., Nelson, J., Norton, A. S., Sheriff, M. J., Tomasik, E., & VanBeek, K. R. (2019). A collaborative approach to bridging the gap between wildlife managers and researchers. The Journal of Wildlife Management, 83(8), 1644–1651. https://doi.org/10.1002/jwmg.21759

Download

Collaboration

Lindenmayer, D. B., Lavery, T., & Scheele, B. C. (2022). Why We Need to Invest in Large-Scale, Long-Term Monitoring Programs in Landscape Ecology and Conservation Biology. Current Landscape Ecology Reports, 7(4), 137–146. https://doi.org/10.1007/s40823-022-00079-2

Download

Attendee Submissions (Unsorted)

Bayne, E., Boutin, S., & Moses, R. (2008). Ecological factors influencing the spatial pattern of Canada lynx relative to its southern range edge in Alberta, Canada. Canadian Journal Of Zoology-Revue Canadienne De Zoologie, 86(10), 1189–1197. https://doi.org/10.1139/Z08-099

Download

Attendee Submissions

Bayne, E., Moses, R., & Boutin, S. (2005). Evaluation of winter tracking protocols as a method for monitoring mammals in the Alberta Biodiversity Monitoring Program. Alberta Biodiversity Monitoring Institute. https://abmi.ca/home/publications/51-100/66

Download

Attendee Submissions

Boulanger, J., Adamczewski, J., Nishi, J., Cluff, D., Williams, J., Sayine-Crawford, H., & LeClerc, L. M. (2018). Estimates of Breeding Females & Adult Herd Size and Analyses of Demographics for the Bluenose-East Herd of Barren-ground Caribou: 2018 Calving Ground Photographic Survey. https://www.gov.nt.ca/ecc/sites/ecc/files/resources/326_manuscript.pdf

Download

Attendee Submissions

Boulanger, J., Gunn, A., Adamczewski, J., & Croft, B. (2011). A data‐driven demographic model to explore the decline of the Bathurst caribou herd. The Journal of Wildlife Management, 75(4), 883–896. https://doi.org/10.1002/jwmg.108

Download

Attendee Submissions

Boyce, M. S., Baxter, P. W. J., & Possingham, H. P. (2012). Managing moose harvests by the seat of your pants. Theoretical Population Biology, 82(4), 340–347. https://doi.org/10.1016/j.tpb.2012.03.002

Download

Attendee Submissions

Boyce, M. S., & Corrigan, R. (2017). Moose survey app for population monitoring. Wildlife Society Bulletin, 41(1), 125–128. https://doi.org/10.1002/wsb.732

Download

Attendee Submissions

Boyce, M. S., Johnson, C. J., Merrill, E. H., Nielsen, S. E., Solberg, E. J., & Van Moorter, B. (2016). REVIEW: Can habitat selection predict abundance? Journal of Animal Ecology, 85(1), 11–20. https://doi.org/10.1111/1365-2656.12359

Download

Attendee Submissions

Boyce, M. S., & McDonald, L. L. (1999). Relating populations to habitats using resource selection functions. Trends in Ecology & Evolution, 14(7), 268–272. https://doi.org/10.1016/S0169-5347(99)01593-

Download

Attendee Submissions

Broekman, M. J. E., Hoeks, S., Freriks, R., Langendoen, M. M., Runge, K. M., Savenco, E., Ter Harmsel, R., Huijbregts, M. A. J., & Tucker, M. A. (2023). HomeRange: A global database of mammalian home ranges. Global Ecology and Biogeography, 32(2), 198–205. https://doi.org/10.1111/geb.13625

Download

Attendee Submissions

Buckland, S. T., Borchers, D. L., Marques, T. A., & Fewster, R. M. (2023). Wildlife Population Assessment: Changing Priorities Driven by Technological Advances. Journal of Statistical Theory and Practice, 17(2), 20. https://doi.org/10.1007/s42519-023-00319-6

Download

Attendee Submissions

Nagy-Reis, M., Reimer, J. R., Lewis, M. A., Jensen, W. F., & Boyce, M. S. (2021). Aligning population models with data: Adaptive management for big game harvests. Global Ecology and Conservation, 26, e01501. https://doi.org/10.1016/j.gecco.2021.e01501

Download

Attendee Submissions

Nielsen, S., Bayne, E., Schieck, J., Herbers, J., & Boutin, S. (2007). A new method to estimate species and biodiversity intactness using empirically derived reference conditions. Biological Conservation, 137(3), 403–414. https://doi.org/10.1016/j.biocon.2007.02.024

Download

Attendee Submissions

Peters, W., Hebblewhite, M., Smith, K. G., Webb, S. M., Webb, N., Russell, M., Stambaugh, C., & Anderson, R. B. (2014). Contrasting aerial moose population estimation methods and evaluating sightability in west‐central Alberta, Canada. Wildlife Society Bulletin, 38(3), 639–649. https://doi.org/10.1002/wsb.433

Download